Geotechnical Evaluation Report

Proposed Pedestrian Bridge Great Sauk State Trail/Walking Iron Trail Sauk City, Wisconsin

Prepared for

Sauk County, Wisconsin

Brandon K. Wright, PE Senior Engineer License Number: 40141

February 19, 2021

Project B2008520

Braun Intertec Corporation

Braun Intertec Corporation 2309 Palace Street La Crosse, WI 54603 Phone: 608.781.7277 Fax: 608.781.7279 Web: braunintertec.com

February 19, 2021

Project B2008520

Ms. Lisa Wilson Sauk County Land Resources and Environmental Department West Square Building, Room 248 505 Broadway Baraboo, WI 53913

Re: Geotechnical Evaluation

Proposed Pedestrian Bridge

Great Sauk State Trail/Walking Iron Trail

Sauk City, Wisconsin

Dear Ms. Wilson:

We are pleased to present this Geotechnical Evaluation Report for the proposed Great Sauk State Trail/Walking Iron Trail pedestrian bridge to be constructed over the Wisconsin River in Sauk City, Wisconsin.

Thank you for making Braun Intertec your geotechnical consultant for this project. If you have questions about this report, or if there are other services that we can provide in support of our work to date, please contact Brandon Wright at 608.781.7277 or by email at bwright@braunintertec.com.

Sincerely,

BRAUN INTERTEC CORPORATION

Brandon K. Wright, PE

Senior Engineer

Scott M. Mackiewicz, PhD, PE, D.GE Vice President, Principal Engineer Jeffrey A. Gebhard, PE

Vice President, Principal Engineer

Table of Contents

Desc	ription		Page
A.	Introd	duction	1
	A.1.	Project Description	1
	A.2.	Site Conditions and History	
	A.3.	Background Information and Reference Documents	
	A.4.	Scope of Services	
B.	Resul	ts	
	B.1.	Boring Results	
	B.2.	Groundwater	
	В.3.	Organic Vapor Results	
	B.4.	Laboratory Test Results	
		B.4.a. Soil Classification Tests	
		B.4.b. Compression Strength Testing on Cored Bedrock	
C.		mmendations	
	C.1.	Design and Construction Discussion	
	C.2.	Driven Piles	
		C.2.a. Axial Resistance	
		C.2.b. Driven Pile Construction Considerations	
	C.3.	Drilled Shafts	
		C.3.a. Axial Resistance	
		C.3.b. Drilled Shaft Construction Considerations	
	C.4.	Lateral Geotechnical Parameters	
	C.5.	Earthwork	
		C.5.a. Excavated Slopes	
		C.5.b. Excavation Dewatering	
	0.0	C.5.c. Engineered Fill Materials and Compaction	
	C.6.	Configuring and Resisting Lateral Load on Abutment Walls	
	C.7.	Seismic Consideration	
		C.7.a. Site Classification	
_	Dunna	C.7.b. Commentary on Soil Liquefaction	
D.		dures	
	D.1.	Penetration Test Borings	
	D.2.		
	D.3.	Exploration Logs	
		D.3.a. Log of Boring and Coring Sheets	
		D.3.b. Organic Vapor Measurements	
	D.4.	Material Classification and Testing	
	D.4.	D.4.a. Visual and Manual Classification	
		D.4.b. Laboratory Testing	
	D.5.	Groundwater Measurements	
E.		fications	
L.	E.1.	Variations in Subsurface Conditions	
	L.1.	E.1.a. Material Strata	
		E.1.b. Groundwater Levels	
	E.2.	Continuity of Professional Responsibility	
	L. Z.	Continuity of Froncesional Acaponalamity	

Table of Contents (continued)

22
22
23
23

Appendix A

Soil Boring Location Sketch Log of Boring Sheets B-1 to B-4 Rock Core Photographs Descriptive Terminology of Soil Descriptive Terminology of Rock

Appendix B

Compression Tests on Cored Bedrock Sieve Analysis

A. Introduction

A.1. Project Description

This Geotechnical Evaluation Report addresses the proposed design and construction of a pedestrian bridge over the Wisconsin River in Sauk City, Wisconsin. The pedestrian bridge will be located at the former Wisconsin Southern Rail bridge crossing. The proposed bridge will be a three-span Warren steel truss with abutments on the west and east embankments, and two center piers in the Wisconsin River. The bridge will have a total length of about 502 feet, with each span having lengths of 164 to 168 feet. Based on the RFP, we understand that the abutments will be supported on driven HP14x73 piles and the piers will be supported on 9-foot diameter drilled shafts with 8 1/2-foot diameter rock socket extending into the sandstone. Furthermore, we understand that driven, 14-inch diameter closed-ended pipe (CEP) piles are also being considered to support the abutments.

While currently planned to be a pedestrian bridge, the proposed bridge could have potential future use as a railroad bridge. For this reason, the abutments and center piers are being designed and constructed in accordance with AREMA loading requirements. The abutment pilings will be driven to a minimum ultimate axial resistance of 250 tons per pile. The center pier service design loads (at the scour depth) include an axial load of 2,850 kips, a shear force of 145 kips, and an overturning moment of 9,750 kipfeet.

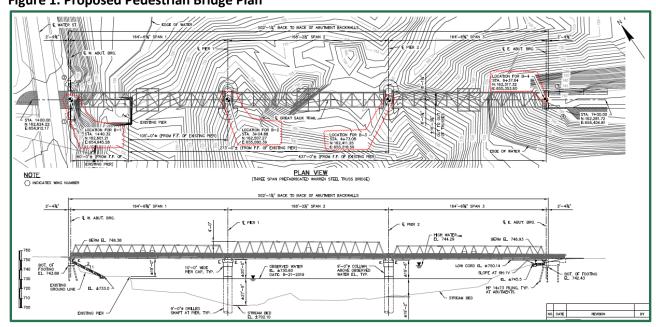
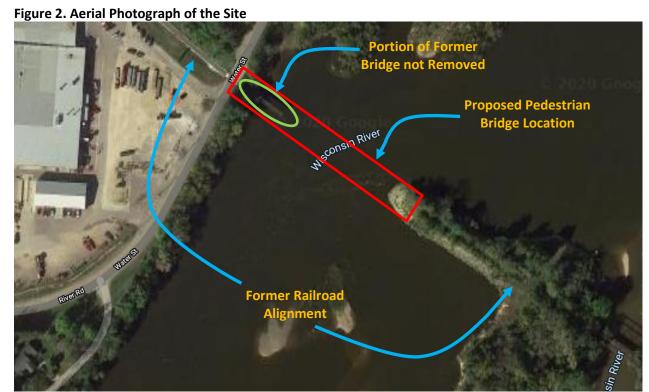


Figure 1. Proposed Pedestrian Bridge Plan


Figure prepared by Westbrook Associated Engineers, Inc., dated July 24, 2020.

A.2. Site Conditions and History

Historically, a railroad bridge under the operation of Wisconsin Southern Rail spanned across the Wisconsin River. The railroad bridge was deemed structurally deficient and the railroad track was abandoned. Although the majority of the bridge was removed, a portion of the western abutment, along with approximately 130 feet of the bridge superstructure, remains in place extending over the Wisconsin River.

The location of the proposed pedestrian bridge, the former railroad alignment, and the location of the former bridge that was not removed are shown in Figure 2.

Photograph from Google Earth.

A.3. Background Information and Reference Documents

We reviewed the following sources and publicly available sources of information:

- Request for Proposal, issued by Sauk County, Wisconsin, dated August 5, 2020.
- University of Wisconsin Extension, Preliminary Bedrock Geologic of Dane County, Wisconsin,
 Plate 1 and Plate 2, dated 2013.
- Communications with Sauk County regarding site access, previous or known geotechnical and geology of the area, condition and requirements of the existing railroad, and requirements for required permits for this phase of the project.
- Overhead images of the site using Google Earth, used to aid in evaluating site access and historic construction.

We have described our understanding of the proposed construction and site to the extent others reported it to us. Depending on the extent of available information, we may have made assumptions based on our experience with similar projects. If we have not correctly recorded or interpreted the project details, the project team should notify us. New or changed information could require additional evaluation, analyses and/or recommendations.

A.4. Scope of Services

We performed our scope of services for the project in general accordance with our Proposal QTB125178 to Sauk County, Wisconsin, dated August 28, 2020, and authorized on September 25, 2020. The following list describes the geotechnical tasks completed.

- Reviewing the background information and reference documents previously cited.
- Clearing the exploration location of underground utilities. Westbrook Associated Engineers selected, and we staked the new exploration locations. We acquired the surface elevations and locations with GPS technology and by reference topographic maps included in the RFP.
- Performing four standard penetration test (SPT) borings with rock coring.

- Performing laboratory testing on select samples to aid in soil and rock classification and engineering analysis.
- Preparing this report containing a boring location sketch, logs of soil borings, a summary of the soils and rock encountered, results of laboratory tests, and recommendations for the design of driven pile foundations and drilled shaft foundations.

Our scope of services did not include environmental services but did include screening of collected standard penetration test (SPT) samples with a photoionization detector (PID). Results of the PID screening is presented on the boring logs for each SPT sample. The materials encountered in the borings, however, did not generate organic vapor concentrations above background levels.

B. Results

B.1. Boring Results

Table 1 provides a summary of the soil boring results, in the general order we encountered the strata. For simplicity in this report, we define fill to mean existing, uncontrolled, or undocumented fill. Please refer to the Log of Boring sheets in the Appendix for additional details. The Descriptive Terminology sheets in Appendix A include definitions of abbreviations used in Table 1.

Table 1. Subsurface Profile Summary*

Strata	Soil Type - USCS Classification	Range of Penetration Resistances	Commentary and Details
Fill	SP, SP-SM, SM, GP	4 to 66 BPF	 Fill was encountered in Borings B-1 and B-4, at the abutment locations. The fill extended to depths of 18 feet in Boring B-1 and to a depth of 38 feet in Boring B-4. Fill was composed of poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand (SM), and poorly graded gravel (GP). Moisture condition generally moist to wet.
	SP, SM, ML	5 to 99 BPF	 At the river bottom in Borings B-2 and B-3, and below the fill in Borings B-1 and B-4, the borings encountered alluvial soils. Alluvial soils extended to depths of 107 to 109 feet in the Wisconsin River, corresponding to elevations 631 to 633, and to depths of 123 to 139 feet at the abutment locations, which correspond to an elevation of 631 at the west
Alluvial deposits	GP	33 BPF to 100 blows for 2 inches of penetration	 abutment and elevation 612 at the east abutment. Alluvial soils were composed mainly of poorly graded sand (SP), but also contained sandy silt (ML), poorly graded gravel, (GP), and fat clay (CH). General penetration resistance testing indicates the sand
	СН	37 BPF	 and silt soils are loose to very dense, but are medium dense overall, the gravel soils are dense to very dense, and the clay soil is hard. Moisture condition generally moist to wet.
Bedrock	Sandstone and limestone	100 blows for 2 inches of penetration	 Top of bedrock varied from elevation 612 to 633 in all the borings. After auger refusal was met, Borings B-2 and B-3, were cored to approximate elevations of 599 to 600 1/2 feet. Bedrock was composed of sandstone from the Wonewoc Formation, underlain by sandstone from the Eau Claire Formation. RQD in the Wonewoc Formation varied from 0 to 20, with 40 to 100 percent recovery. RQD in the Eau Claire Formation varied from 15 to 78, with 90 to 100 percent recovery. Highly to moderately weathered sandstone extended to approximate elevations of 624 to 626 feet. Generally below 624 feet, the sandstone was slightly weathered to unweathered. Highly weathered sandstone was generally white to greenish tan and very soft to soft. Slightly weathered to unweathered sandstone in the Wonewoc Formation was generally brown and greenish gray and moderately hard to hard. Slightly weathered to unweathered sandstone in the Eau Claire Formation was generally gray and hard.

^{*}Abbreviations defined in the attached Descriptive Terminology sheets.

B.2. Groundwater

Table 2 summarizes the depths where we observed groundwater. The attached Log of Boring sheets in the Appendix also include the groundwater information. As indicated, groundwater was consistently in the range of elevations 731 to 738 feet. Given the close proximity of the Wisconsin River, and the free draining characteristics associated with sandy soils, we believe this represents the groundwater elevation for this site. Seasonal and annual fluctuations of groundwater should also be anticipated with the river elevation. We recommend assuming the seasonal high groundwater will be near the 100-year flood elevation, which is reported to be at elevation 744.29.

Table 2. Groundwater Summary

Location	Surface Elevation	Measured or Estimated Depth to Groundwater (ft)	Corresponding Groundwater Elevation (ft)
B-1	754	23	731
B-2	740 1/2*	2 1/2	738**
B-3	740 1/2*	2 1/2	738**
B-4	751	20	731

^{*}Surface elevation refers to top of barge platform while drilling.

B.3. Organic Vapor Results

Our PID screening of the samples of geologic materials encountered in the borings did not generate organic vapor concentrations above background levels. Measured results are presented on each of the boring log sheets.

^{**}Elevation represents the river elevation during drilling.

B.4. Laboratory Test Results

B.4.a. Soil Classification Tests

Table 3 below present the results of our laboratory tests.

Table 3. Laboratory Classification Test Results

Boring	Sample Depth (ft)	Classification	Moisture Content (w, %)	Percent Passing a #200 Sieve
B-1	2 1/2	Fill: Poorly graded sand with silt (SP-SM)	8	10
B-1	5	Fill: Poorly graded gravel (GP)	2	
B-1	7 1/2	Fill: Silty sand with gravel (SM)	5	
B-1	10	Fill: Poorly graded sand with gravel (SP)	8	3
B-2	53	Silty sand (SM)	25	18

B.4.b. Compression Strength Testing on Cored Bedrock

Table 4 below has a summary of our compressive strength testing results on cored bedrock samples collected from Borings B-2 and B-3.

Table 4. Summary of Compressive Strength Tests on Cored Bedrock

Boring	Depth (ft)	Elevation (ft)	Bedrock Type	Formation	Compressive Strength (psi)
B-2	120	620 1/2	Sandstone	Wonewoc	540
B-2	133	607 1/2	Sandstone	Eau Claire	6,270
B-3	118 1/2	622	Sandstone	Wonewoc	3,000
B-3	124 1/2	616	Sandstone	Eau Claire	2,290
B-3	136	604 1/2	Sandstone	Eau Claire	3,850

C. Recommendations

C.1. Design and Construction Discussion

We based the recommendations submitted in this report, in part, upon data obtained from our exploration. The nature and extent of subsurface variations that may exist at the proposed project site will not become evident until construction. If variations appear evident, then the recommendations presented in this report should be re-evaluated. In the event that any changes in the nature, design, location, or depth of the proposed structure occur, the conclusions and recommendations contained in this report are not valid unless we review the changes and confirm or modify our recommendations in writing.

C.2. Driven Piles

We anticipate that HP14x73 or 14-inch diameter closed-ended pipe (CEP) piles filled with concrete, Grade 50 piles will be used for the foundations of the west and east abutments. The HP14x73 and 14-inch CEP piles have a required ultimate axial resistance of up to 250 tons (500 kips) and an allowable axial design resistance of 200 kips which results in a design factor of safety of 2.5. The final pile design should account for any potential grade changes or loss of support due to scour. We have provided recommendations for driven HP14x73 and 14-inch concrete filled CEP piles below.

C.2.a. Axial Resistance

We have assumed the grade at the abutments will be increased by less than 2 feet. Based on the soil we encountered and minimal grade changes, we do not recommend including drag loads for pile design. If the grades increase by more than 2 feet and site conditions differ from what we encountered in our borings, we should be contacted to evaluate the drag loads.

Braun Intertec performed a preliminary drivability analysis using the GRLWEAP program, the subsurface profile at each abutment, and a Delmag D30-32 diesel pile driving hammer with a rated energy of 75 kip-feet. Results of our preliminary evaluation indicated that the piles can be driven to the required ultimate resistance and pile tip elevations with a relatively low risk of over-stressing the pile. We anticipate blow counts at the end of driving are less than 20 blows per inch for the modeled system. If requested, we can perform a more detailed hammer qualification analysis prior to construction.

Based on this evaluation, we anticipate the driven HP14x73 piles will terminate in sandstone at the West Abutment and in dense to very dense gravel at the East Abutment. We anticipate 14-inch diameter, closed-ended pipe (CEP) piles will terminate in dense to very dense sand at both abutments. A summary of anticipated pile tip elevations is provided in Table 5.

Table 5. Anticipated Pile Tip Elevations

Substructure	Pile Type	Top of Pile Elevation (feet)	Ultimate Geotechnical Resistance (kips)	Allowable Geotechnical Resistance (kips)**	Anticipated Tip Elevation (feet)	Anticipated Length of Pile (feet)
West	HP14x73	743.9	500	200	624 ± 5	120 ± 5
Abutment	14-inch CEP*		500	200	659 ± 5	85 ± 5
East Abutment	HP14x73	742.4	500	200	622 ± 5	120 ± 5
	14-inch CEP*	742.4	500	200	647 ± 5	95 ± 5

^{*}Closed-end pipe piles filled with concrete.

We anticipate long-term structural settlement for steel H-piles or steel CEP piles filled with concrete, designed and constructed as outlined in this report, should be less than 1/2-inch at the pile top.

C.2.b. Driven Pile Construction Considerations

Our anticipated geotechnical construction considerations for driven piles are presented below:

- Installation: Piles should be installed in accordance with the Plan. Pile driving resistance should be closely monitored and pile resistance should be assessed using dynamic pile testing. For H-piles, we recommend dynamic pile testing be utilized because the piles will be driven into water-bearing sands. We anticipate the potential for overdriving into the water-bearing sands to be higher using energy methods to monitor pile resistance rather than dynamic pile testing. For CEP piles, we recommend dynamic pile testing be utilized to monitor the potential for overstressing the pile and damaging the pile toe. Additionally, this may also help evaluate the potential to reduce pile lengths by measuring the geotechnical resistance at higher elevations.
- Drivability: The ability to drive the pile to the required penetration depth should be checked using a Wave Equation Analysis. A wave equation analysis (WEAP) for the actual pile type and hammer size used to install the piling should be performed and submitted three weeks prior to installing piles. It is important that the final set during driving not exceed 20 blows per inch in order to avoid damaging the hammer and piling.

^{**}Factor of safety of 2.5.

- Protective Pile Tips: For H-piles, protective points to reduce the potential for damage during driving are required due to the presence of high blow count sands and gravel. For CEP piles, we recommend a thickened driving shoe to reduce the potential for damage during driving.
- Pile Properties: We recommend filling CEP piles with concrete having a minimum 28-day compressive strength of 3,000 psi.
- Pile Spacing: Piles should be installed with a minimum center-to-center spacing of three diameters. No reduction in individual pile capacity for group action is needed for this spacing. Group effects should be included in the evaluation of lateral resistance.
- Existing Bridge Substructure: We recommend the location of the piles be planned to avoid remaining substructure components from the former railroad bridge.

C.3. Drilled Shafts

Drilled shafts can be used as the foundation system for the span piers (Piers 1 and 2). Straight-sided, drilled shafts will develop capacity from side resistance and end bearing within the rock socket. We anticipate that drilled shaft construction will be difficult through the gravel and will require the use of a permanent casing extending through the alluvial sand and gravel materials and into the top of the bedrock.

Excavation of the very dense gravel may require the use of special techniques. Drilled shaft casing could be installed using oscillator-rotator type methods. Excavation of the moderately hard, weathered sandstone formations will require the use of a rock bit and core barrel. The contractor should review the boring logs to assess the potential problems with completing the excavations and requirements of casing for the materials encountered at this site. Recommendations for design and construction of the drilled shafts are presented in the following sections.

C.3.a. Axial Resistance

Drilled shaft foundations should be straight-sided, steel reinforced concrete, and designed based on the recommendations presented in Table 6 and the subsurface information at the appropriate boring location. The allowable capacity is based on a safety factor of 2.5 for side resistance and 3.0 for end bearing. Uplift capacity of shafts can be computed using the axial compressive capacity from side resistance multiplied by a reduction factor of 0.7.

Table 6. Drilled Shaft Geotechnical Resistance Summary

			Compressive Side Resistance (ksf) ¹	End Bearing Resistance (ksf)		
Elevation (feet)	Material	Ultimate	Allowable (FOS=2.5)	Uplift Resistance	Ultimate	Allowable (FOS=3.0)
> 631	Overburden soil	NA	NA ²	NA	NA	NA
631 to 617	Wonewoc Formation, Sandstone, q _u =600 psi	4	1.6	1.1	NA	NA
617 to 600	Eau Claire Formation, Sandstone, q _u =2000 psi	8.8	3.5	2.5	240	80

NA=not applicable

Based on the design plans provided we anticipate the drilled shafts will be 9-foot in diameter in the overburden soils with an 8 1/2-foot diameter rock socket into the underlying sandstone. The center pier service design loads (at the scour depth) include an axial load of 2,850 kips, a shear force of 145 kips, and an overturning moment of 9,750 kip-feet.

We recommend the drilled shafts (also known as drilled piers or caissons) be designed for a combination of side resistance and end bearing in the sound, slightly weathered to unweathered bedrock of the Eau Claire Formation. Side resistance in the cased portion of the shaft and within the overburden have been neglected.

We recommend the drilled shafts be embedded within the slightly weathered to unweathered sandstone a minimum of 2 rock socket diameters, i.e., 17 feet. The final depth of penetration will be determined by a representative of the geotechnical engineer in the field and may vary from the depths noted by the rock cores. We have estimated the approximate tip elevation of the drilled shafts in Table 7 using the provided loads above in Table 6.

Table 7. Estimated Depth to Bedrock and Drilled Shaft Tip Elevation Pier 1 and Pier 2

Structure	Required Allowable Axial Resistance (kips)	Stream Bed Elevation (feet)	Top of Rock Elevation (feet)	Approximate Depth to Tip Elevation Below Bottom of Stream Channel (feet)	Approximate Drilled Shaft Tip Elevation (feet)
Pier 1 (B-2)	2,850	708	631	91	614
Pier 2 (B-3)	2,850	716	634	99	617

¹Uplift resistance can be determined by taking 70% of the compressive side resistance.

²At the time of this report we were not provided scour elevation. We anticipate the scour depth will be fully within the overburden soil.

We anticipate total and differential settlement of the drilled shafts will be negligible under the proposed loads. Significant lateral capacity can be developed by drilled shafts. We recommend the centers of the shafts be spaced at three diameters apart, unless otherwise reviewed. Note that group effects for lateral loading apply for shaft spacing less than five diameters, center-to-center, unless otherwise reviewed.

C.3.b. Drilled Shaft Construction Considerations

- Scour: We were not provided the elevation of scour at the time of this report. We recommend neglecting any side resistance within the scour zone for the axial and lateral resistance of the drilled shafts.
- Shaft Spacing: We understand that preliminarily the 9-foot diameter drilled shafts with 8 1/2-foot diameter rock sockets will be spaced at 21-feet center-to-center for a spacing of 2 1/2 rock socket diameters. No reduction in individual shaft axial capacity for group action is needed for this rock socket spacing. If the center-to-center spacing changes to less than 2 1/2 rock socket diameters, we should be contacted to reevaluate reduced capacities. Construction of adjacent drilled shaft rock sockets within 3 shaft diameters (i.e. 27 feet for 9-foot diameter drilled shafts) should not happen on the same day.
- Permanent Casing: For all drilled shafts, the use of smooth-walled casing extending to bedrock will be required. We anticipate oscillating/rotating casing may be required through the gravel layer extending to the top of rock. The casing should be the same, nominal diameter as the drilled shaft.
- Wet Excavation Method: If drilled shafts are installed using casing and wet methods (i.e., using water or slurry to maintain excavation stability), the contractor should prevent the slurry from "setting up" prior to pouring the concrete. Additionally, the contractor should control the sand content of the slurry to less than 4 percent by volume at any point in the excavation and maintain the slurry level a minimum of 6 feet above the highest expected piezometric head surface.
- Integrity Testing: We recommend that a minimum of inspection tubes be installed within each of the drilled shafts to facilitate cross-hole sonic logging at completion of the shaft.
- Concrete Placement: The bottom of the shaft excavation should be cleaned of water and loose material before placing reinforcing steel and concrete. Concrete placement should be continuous from the bottom to the top elevation of the shaft. Wet excavated shafts will require concrete placement using tremie methods. The tremie pipe should be clean and have

a suitable inside diameter for use with the specific concrete mix, but not less than 10 inches. The discharge end of the tremie should allow free, radial flow of the concrete and be immersed at least 10 feet in concrete and maintain a positive pressure differential at all times during placement to prevent water or slurry intrusion.

Construction Observations: Drilled shaft installation should be monitored by Braun Intertec to assess 1) the proper identification of bearing material, 2) that adequate penetration of the shaft excavation into the bearing layer is provided, and 3) that the base and sides of the shaft excavation are clean of loose cuttings, where observable. Note that these items and the following discussion are intended to benefit the Owner and maintain the intent of the design during construction. This discussion is not intended to prescribe a specific means and methods for construction.

C.4. Lateral Geotechnical Parameters

Lateral capacity and behavior of the shafts and piles may be evaluated using the "p-y method" and LPILE (Ensoft, Inc.) Version 2019, or similar, software. The soil and rock input parameters for the LPILE program, in Tables 8 and 9, was based on the design subsurface profiles and were estimated or calculated using generally accepted, engineering correlations. The following outlines our assumptions and general recommendations for evaluation of lateral loads.

- No lateral soil resistance should be given within the depth of scour or the depth to frost zone (5 feet below existing grade), whichever is greater. At the time of this report the scour depth was unknown.
- If the drilled shafts are spaced closer than six times the pile diameter center-to-center spacing in the direction of loading, lateral resistances should be scaled by an appropriate multiplier, see Table 10. Values for drilled shafts spaced at different spacings than what are in Table 10 can be linearly interpolated from the provided multiplier values.
- Use the observed groundwater and river water level for the groundwater location in lateral analyses. We have used the 100-year flood elevation of 744.29 feet as the groundwater elevation.
- The values indicated below are ultimate values and do not include any factors of safety.
- For the lateral analysis of driven piles at the abutments, we do not recommend providing lateral resistance in the sandstone layers because we expect the pile will meet refusal within the dense to very dense sand layers or less than 5 feet into the sandstone.

 A p-multiplier of 0.4 should be used within the slope height for driven piles planned within 6 diameters of abutments having a 2H:1V fore slopes in addition to p-multiplier required for spacing.

Table 8. LPILE Parameters

Table 8. LPILE	Parameters			<u> </u>			
Elevation (feet)	Material	p-y Model	Effective Unit Weight (pcf) ¹	Undrained Shear Strength, s _u (psf)	Friction Angle, ф (degrees)	Strain Factor, 850	Horizontal Modulus of Subgrade Reaction, k _h (pci)
			West Abu	tment			
> 744	Fill soil – SP, GP, SM	Sand	120		30		20
744 to 736	Fill soil – SP, GP, SM	Sand	58		32		50
736 to 725	SP, N~13	Sand	58		32		50
725 to 705	SP, N~40	Sand	63		38		120
705 to 685	SP, N~30	Sand	63		36		100
685 to 631	SP, N~35	Sand	63		36		100
			Pier #1 a	nd #2			
> 698	SP, N~10	Sand	58		31		50
698 to 683	SP-SM, N~20	Sand	58		33		80
683 to 640	SP, N~30	Sand	63		36		100
640 to 630	SP, N~50	Sand	63		40		280
			East Abu	tment			
> 731	Fill soil – SP, SM	Sand	58		30		20
731 to 713	GP, N~20	Sand	63		34		70
713 to 703	ML, N~28	Sand	53		28		15
703 to 667	SP, N~20	Sand	58		34		70
667 to 627	SP, N~40	Sand	63		38		120
627 to 617	GP, N~50+	Sand	63		40		280
617 to 612	CH, N~37	Stiff clay w/o water	63	6,000		0.004	

¹For effective unit weight values, we subtracted 62.4 pcf from the total unit weight for soil layers below EL 744 feet.

Table 9. LPILE Geotechnical Parameters for Rock – Piers #1 and #2

Approximate Elevation (feet)	Material	p-y Model	Effective Unit Weight (pcf)	Unconfined Compressive Strength, qu (psi)	Initial Modulus of Rock Mass (psi)	RQD (%)	Strain Factor, k _{rm}
630 to 617	Wonewoc Formation, sandstone	Weak rock	135/73	600	100,000	20	0.0005
617 to 605	Eau Claire Formation, sandstone, qu=2000 psi	Rock	140/78	2,000			

Table 10. P-Multiplier for Multiple Row Pile Groups (modified from Table 10.7.2.4-1, AASHTO 2019)

Pile Center to	P-Multiplier, Pm					
Center Spacing	Row 1	Row 2	Row 3 and Greater			
2.3B	0.73	0.24	0.16			
3B	0.8	0.4	0.3			
5B	1.0	0.85	0.7			

The lateral capacity of the foundation is determined based on the stiffness of the foundation element and the stiffness of the soil and rock surrounding the element. When considering lateral capacity of shafts, it should also be understood the process the contractor will use to install the shafts. It is anticipated the contractors will use a series of casing resulting in a "telescoping" of the shaft at the surface, which can considerably increase lateral capacity.

C.5. Earthwork

C.5.a. Excavated Slopes

Based on the borings, we anticipate on-site soils in excavations will consist of granular fill and sandy alluvial soils. These soils are typically considered Type C Soil under OSHA (Occupational Safety and Health Administration) guidelines. OSHA guidelines indicate unsupported excavations in Type C soils should have a gradient no steeper than 1.5H:1V. Slopes constructed in this manner may still exhibit surface sloughing. OSHA requires an engineer to evaluate slopes or excavations over 20 feet in depth.

An OSHA-approved qualified person should review the soil classification in the field. Excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P, "Excavations and Trenches." This document states excavation safety is the responsibility of the contractor. The project specifications should reference these OSHA requirements.

C.5.b. Excavation Dewatering

We recommend removing groundwater from the excavations. Project planning should include temporary sumps and pumps for excavations above elevation 740. However, any excavation that extends below elevation 740 should anticipate the need for dewatering. In the sand soils present at this site, well points or deep wells will likely be required for dewatering. A licensed dewatering contractor should review our report and provide recommendations for dewatering.

C.5.c. Engineered Fill Materials and Compaction

Table 11 below contains our recommendations for engineered fill materials.

Table 11. Engineered Fill Materials*

Fill Classification	Locations To Be Used	Fill Source and Soil Descriptions	Gradation
Structural fill	Below abutment wall foundationsExcavation backfill	Imported sand and gravel consisting of GP, GW, SP, SW, SP-SM	100% passing 3-inch sieve <10% passing #200 sieve <2% Organic Content (OC)
Abutment backfill	 Abutment wall backfill – Types 1 or 2** Drainage layer placed within 2 feet of abutment walls – Type 1** 	Imported sand and gravel consisting of GP, GW, SP, SW, SP-SM	100% passing 1-inch sieve <10% passing #200 sieve <2% Organic Content (OC)
Submerged backfill	Placement of structural fill below the water table	Imported crushed gravel	3/4-inch or larger <5% passing #200 sieve
Non-structural fill	Below landscaped surfaces, where subsidence is not a concern	On-site soils and imported soils	100% passing 6-inch sieve < 10% OC

^{*} More select soils comprised of coarse sands with < 5% passing #200 sieve may be needed to accommodate work occurring in periods of wet or freezing weather.

^{**}Abutment backfill types 1 and 2 from Table 8-5-1 from 2019 American Railway Engineering and Maintenance of Way Association Manual of Railway Engineering (AREMA MRE, 2019) Chapter 8.

We recommend spreading engineered fill in loose lifts of approximately 8 to 12 inches thick. We recommend compacting engineered fill in accordance with the criteria presented below in Table 12. The project documents should specify relative compaction of engineered fill, based on the structure located above the engineered fill, and vertical proximity to that structure.

Table 12. Compaction Recommendations Summary

Reference	Relative Compaction, percent (ASTM D698 – Standard Proctor)	Moisture Content Variance from Optimum, percentage points
Structural fill	98	-6 to +3
Abutment backfill	95	-2 to +2
Submerged backfill	N/A	N/A
Non-structural fill	90	±6

^{*}Increase compaction requirement to meet compaction required for structure supported by this engineered fill.

The project documents should not allow the contractor to use frozen material as engineered fill or to place engineered fill on frozen material. Frost should not penetrate under foundations during construction.

We recommend performing density tests in engineered fill to evaluate if the contractors are effectively compacting the soil and meeting project requirements.

C.6. Configuring and Resisting Lateral Load on Abutment Walls

We recommend designing the retaining wall using the parameters in Table 13. Designs should also consider the slope of any engineered fill and dead or live loads placed behind the abutment walls within a horizontal distance that is equal to the height of the walls. The design of abutment walls below the water table should include hydrostatic forces action on the walls to the elevation of the 100-year flood, which is reported to be at elevation 744.29. The values in Table 14 below does not include hydrostatic pressure.

The abutment walls should incorporate a minimum of 2 feet (horizontal) of free draining, engineered fill (Type 1 backfill material), as defined in Table 8-5-1 in AREMA MRE 2019, and Table 11 above. We recommend a drainage system be installed to prevent hydrostatic loading on the abutment wall above the water table.

Table 13. Recommended Below-Grade Wall Design Parameters

	Wet Unit		Lateral Earth Pressure Coefficients						
Retained Soil	Weight (pcf)	Friction Angle (degrees)	Active, Ka	At-Rest, Ko	Passive, Kp				
Abutment backfill – Type 1	105	32	0.31	0.47	3.25				
Abutment backfill – Type 2	110	30	0.33	0.50	3.00				

^{*} Based on Rankine model for soils in a region behind the wall extending at least 2 horizontal feet beyond the bottom outer edges of the wall footings and then rising up and away from the wall at an angle no steeper than 60 degrees from horizontal.

Sliding resistance between the bottom of the footing and the soil can also resist lateral pressures. We recommend assuming a sliding coefficient equal to 0.35 between the concrete and soil.

The values presented in this section are un-factored.

C.7. Seismic Consideration

C.7.a. Site Classification

We based the seismic site class evaluation for this bridge on our interpretation of the soil and bedrock profile as indicated in our boring and defined per Table 9-1-6, American Railway Engineering and Maintenance of Way Association Manual of Railway Engineering (AREMA MRE, 2019). Based on our evaluation, we recommend a Site Class D, per Section 1.4.4.1.1 of the AREMA MRE (2019).

Additionally, we evaluated the seismic site classification based on the Wisconsin Commercial Building Code. Based on the soils and data we collected, this site meets the criteria for Site Class D, as defined in Table 1613.5.2 of Section 1613.5.2 of the 2019 International Building Code (IBC) adopted by the Wisconsin Commercial Building Code.

^{**}Refer to Table 11 for requirements of abutment backfill.

C.7.b. Commentary on Soil Liquefaction

For liquefaction to occur during earthquake shaking, three conditions are generally necessary: (1) saturated ground, (2) liquefaction-susceptible soils (i.e. low-plasticity fine-grained and/or granular soils), and (3) relatively low soil density. Based on the results of our investigation, the liquefaction potential of the site soils is medium.

D. Procedures

D.1. Penetration Test Borings

We drilled the penetration test borings with a track-mounted core and auger drill equipped with hollow-stem auger. We performed the borings in general accordance with ASTM D6151 taking penetration test samples at 2 1/2- or 5-foot intervals in general accordance with ASTM D1586. The boring logs show the actual sample intervals and corresponding depths

D.2. Rock Cores

We performed rock cores with an NQ-3 core barrel. First, we lowered the bit and casing to the bottom of the previously advanced borehole. Then we lowered the core barrel into the casing with a wire line and locked into place. We advanced the bit and barrel by rotating the assembly while applying crowd pressure. We used bentonite-drilling mud to cool the bit and wash cuttings to the surface. Our drillers noted bit pressure, rate of advance, fluid pressure and fluid return as coring progressed. They also noted intervals with a rapid rate of advance, a sudden loss of fluid pressure or return and intervals with a loss of bit pressure.

After completing each 5-foot core run, the drillers unlocked the core barrel from the bit and brought the barrel to the surface. They then extruded the split inner tube from the barrel and opened the tube to reveal the core sample. After field classification and logging, the drillers packed the core into a cardboard storage box, arranged into 2-foot-long sections.

D.3. Exploration Logs

D.3.a. Log of Boring and Coring Sheets

The Appendix includes Log of Boring sheets for our penetration test borings. The logs identify and describe the penetrated geologic materials and present the results of penetration resistance and other in-situ tests performed. The logs also present the results of organic vapor screening, laboratory tests performed on penetration test samples, and groundwater measurements.

We inferred strata boundaries from changes in the penetration test samples and the auger cuttings. Because we did not perform continuous sampling, the strata boundary depths are only approximate. The boundary depths likely vary away from the boring locations, and the boundaries themselves may occur as gradual rather than abrupt transitions.

Follow the standard penetration test logs, we have logs of our rock coring. The logs identify and describe rock lithology, weathering, hardness, bedding and fracture characteristics, and other features. The logs also report the bit pressure, rate of advance, and water pressure and return (if applicable) recorded during the coring process. The percent recovery and rock quality designation (RQD) for each 5-foot core run is also shown.

We inferred strata boundaries from changes in lithology along the length of the core sample. Due to natural and mechanical fractures, destruction of the rock fabric during coring, and limited recovery, it is difficult to place the core sample in the geologic profile; the strata boundary depths in the rock are also approximate, and likely vary from the core locations.

D.3.b. Organic Vapor Measurements

We screened the material samples retrieved during drilling for the presence of organic vapors with a photoionization detector (PID) using both: (1) direct readings from each sample, and (2) the headspace method. The PID is equipped with a 10.6 eV lamp and calibrated to an isobutylene standard, prior to the start of fieldwork.

The materials encountered in the borings did not generate organic vapor concentrations above background levels.

D.3.c. Geologic Origins

We assigned geologic origins to the materials shown on the logs and referenced within this report, based on: (1) a review of the background information and reference documents cited above, (2) visual classification of the various geologic material samples retrieved during the course of our subsurface exploration, (3) penetration resistance and other in-situ testing performed for the project, (4) laboratory test results, and (5) available common knowledge of the geologic processes and environments that have impacted the site and surrounding area in the past.

D.4. Material Classification and Testing

D.4.a. Visual and Manual Classification

We visually and manually classified the geologic materials encountered based on ASTM D2488. When we performed laboratory classification tests, we used the results to classify the geologic materials in accordance with ASTM D2487. The Appendix includes a chart explaining the classification system we used.

D.4.b. Laboratory Testing

The exploration logs in the Appendix note most of the results of the laboratory tests performed on geologic material samples. The remaining laboratory test results follow the exploration logs. We performed the tests in general accordance with ASTM or AASHTO procedures.

D.5. Groundwater Measurements

The drillers checked for groundwater while advancing the penetration test borings, and again after auger withdrawal. We then filled the boreholes or allowed them to remain open for an extended period of observation, as noted on the boring logs.

E. Qualifications

E.1. Variations in Subsurface Conditions

E.1.a. Material Strata

We developed our evaluation, analyses, and recommendations from a limited amount of site and subsurface information. It is not standard engineering practice to retrieve material samples from exploration locations continuously with depth. Therefore, we must infer strata boundaries and thicknesses to some extent. Strata boundaries may also be gradual transitions, and project planning should expect the strata to vary in depth, elevation, and thickness away from the exploration locations.

Variations in subsurface conditions present between exploration locations may not be revealed until performing additional exploration work or starting construction. If future activity for this project reveals any such variations, you should notify us so that we may reevaluate our recommendations. Such variations could increase construction costs, and we recommend including a contingency to accommodate them.

E.1.b. Groundwater Levels

We made groundwater measurements under the conditions reported herein and shown on the exploration logs and interpreted in the text of this report. Note that the observation periods were relatively short, and project planning can expect groundwater levels to fluctuate in response to rainfall, flooding, irrigation, seasonal freezing and thawing, surface drainage modifications, and other seasonal and annual factors.

E.2. Continuity of Professional Responsibility

E.2.a. Plan Review

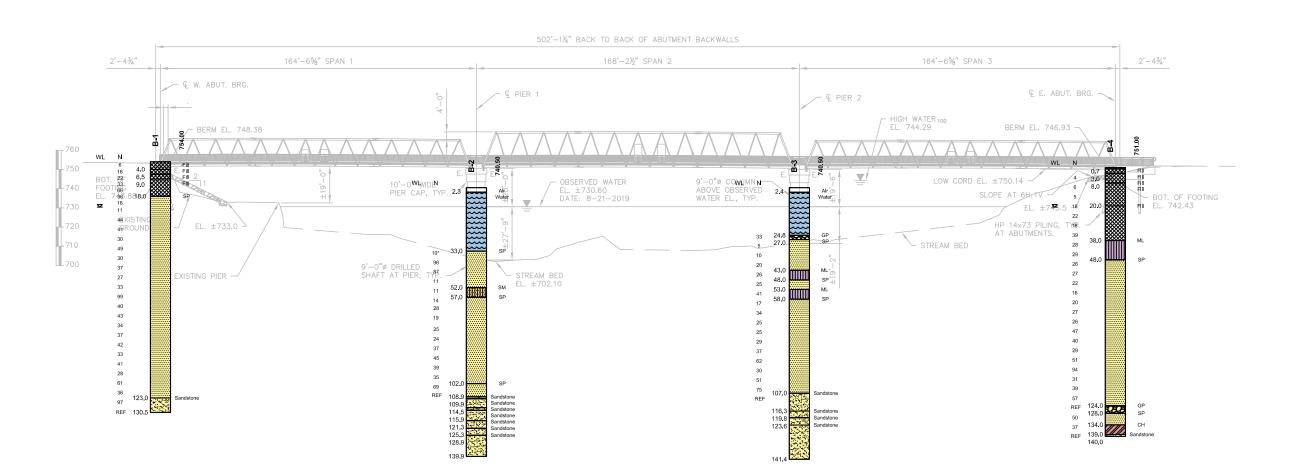
We based this report on a limited amount of information, and we made a number of assumptions to help us develop our recommendations. We should be retained to review the geotechnical aspects of the designs and specifications. This review will allow us to evaluate whether we anticipated the design correctly, if any design changes affect the validity of our recommendations, and if the design and specifications correctly interpret and implement our recommendations.

E.2.b. Construction Observations and Testing

We recommend retaining us to perform the required observations and testing during construction as part of the ongoing geotechnical evaluation. This will allow us to correlate the subsurface conditions exposed during construction with those encountered by the borings and provide professional continuity from the design phase to the construction phase. If we do not perform observations and testing during construction, it becomes the responsibility of others to validate the assumption made during the preparation of this report and to accept the construction-related geotechnical engineer-of-record responsibilities.

E.3. Use of Report

This report is for the exclusive use of the addressed parties. Without written approval, we assume no responsibility to other parties regarding this report. Our evaluation, analyses, and recommendations may not be appropriate for other parties or projects.


E.4. Standard of Care

In performing its services, Braun Intertec used that degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession currently practicing in the same locality. No warranty, express or implied, is made.

Appendix A

INTERTEC

11001 Hampshire Avenue S Minneapolis, MN 55438 952.995.2000 braunintertec.com

Drawing Information
Project No:

SCALE: 1" = 50'

B2008520

Project Information

Geotechnical Evaluation

Proposed Pedestrian Bridge - Great Sauk State Trail / Walking Iron Trail

Wisconsin River

Sauk City, Wisconsin

Soil Boring Location Sketch

Figure A-1

Project	Nu	mbe	r B	200852	0				BORING:		-9,	B-1	
Geotec									LOCATION:	See atta	ched sket		
					alking Iror	Trail							
Pedesti Sauk C			_						NORTHING	. 4	62601	EASTING:	654945
	ıty,				L OCOED BY		0.16-1-1						
DRILLER:			. Sca	1	LOGGED BY:	1	C. Kehl				11/18/20		11/18/20
SURFACE ELEVATION:		754.0	tt		504	METHOD:	Mud	Rotary	SURFACIN	G:	Gravel	WEATHER:	Sunny, 45°F
Elev./ Depth ft	Water Level		(Soi		escription of M 2488 or 2487 1110-1-290	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
_					Y GRADED S wn, moist	AND with SI	LT (SP-						
_ _ - _ 750.0			,	, 22	,				3-3-3 (6) 12"		8	P200=10% PID=0.3 ppm	
- 4.0 - 4.0 - 747.5			FILL	: POORL	Y GRADED G	RAVEL (GP)), tan	5—	6-10-6 (16) 6"		2	PID=0.5 ppm	
6.5 - - 745.0				.: SILTY S vn, moist	AND with GR	AVEL (SM),	red to		8-9-13 (22) 16"		5	PID=0.4 ppm	
_ 9.0 _ _ _				.: POORL`), brown, r	Y GRADED S noist	AND with GF	RAVEL	10-	9-17-16 (33) 16"		8	P200=3% PID=0.2 ppm	
									22-31-35 (66) 18"			PID=0.3 ppm	
- - - - -								15	26-20-16 (36) 16"			PID=0.3 ppm	
736.0 - 18.0 			light		ADED SAND (oist to wet, m /IUM)			20 —	6-8-8 (16) 14"			PID=0.3 ppm	
- - - - - - - -								25	6-4-7 (11) 12"			PID=0.2 ppm	
								30	10-17-27 (44) 18"			PID=0.2 ppm	
B2008520				Co	ntinued on n			Corporation			01/29/2021	B	l page 1 of 5

The Science You Bu		200050				S		Ierminol	ogy sheet		of abbreviations	
Project N			U				BORING: B-1 LOCATION: See attached sketch					
Geotechn			alking Iron	Trail			LOCATION:	See atta	ched sket	ch		
Pedestria	n Bridg	е	aiking iron	IIaii								
Sauk City	, Wisco	nsin					NORTHING:	: 10	62601	EASTING:	654945	
DRILLER:	G. Sc	allon	LOGGED BY:		C. Kehl		START DAT	E:	11/18/20	END DATE:	11/18/20	
SURFACE ELEVATION:	754.0 ft	RIG: 85	504	METHOD:	Mud	Rotary	SURFACING	€:	Gravel	WEATHER:	Sunny, 45°F	
Elev./ ja de	level (Se		escription of Ma 2488 or 2487; 1110-1-2908	Rock-USA(CE EM	Sample	Blows (N-Value) Recovery	q _₽ tsf	MC %	Tests or	Remarks	
- - - - - - - - -	ligl		ADED SAND (Soist to wet, me			35	14-20-21 (41) 18"			PID=0.4 ppm		
- - - - - - -						40	11-14-16 (30) 18"			PID=0.3 ppm		
- - - - - - - - -						45	14-24-25 (49) 17"			PID=0.3 ppm		
- - - - - - - -						50	10-14-16 (30) 14"			PID=0.4 ppm		
						55	8-13-24 (37) 18"			PID=0.2 ppm		
- - - - - - - -						60	13-13-14 (27) 18"			PID=0.4 ppm		
_ - -		Col	ntinued on ne	ext page								

The Science You		D2000 <i>E</i>	20					Termino	logy sheet		of abbreviations
		er B200852 Evaluatior					BORING:	C#-		B-1	
Great Sa	auk St	ate Trail/W	า /alking Iron	Trail			LOCATION:	see atta	icned sketi	CN	
Pedestri										Τ	
Sauk Cit	ty, Wis	sconsin					NORTHING:	: 1	62601	EASTING:	654945
DRILLER:	(G. Scallon	LOGGED BY:		C. Keh		START DAT	E:	11/18/20	END DATE:	11/18/20
SURFACE ELEVATION:	754.	0 ft RIG: 8	3504	METHOD:	Mud	Rotary	SURFACING	€:	Gravel	WEATHER:	Sunny, 45°F
Elev./ 5 Depth 5	vvater Level		Description of Ma D2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
			RADED SAND (S moist to wet, me JVIUM)			65	14-16-17 (33) 18"			PID=0.3 ppm	
-						70-	33-47-52 (99) 18"			PID=0.4 ppm	
- - - - - -						75	13-20-20 (40) 17"			PID=0.8 ppm	
						80 —	22-17-26 (43) 18"			PID=0.6 ppm	
-						85	10-14-20 (34) 18"			PID=0.7 ppm	
- - - - - -						90 —	16-19-18 (37) 16"			PID=0.8 ppm	
- - - - -		C	ontinued on ne	ext page		95	7-16-26 (42) 18"			PID=1.4 ppm	

Project	Nıı	mhe	r R2	200852	20				BORING:	Terrinio	logy silect	B-1	or abbreviations
Geotec									LOCATION:	See atta	ached sket		
					alking Iron	Trail							
Pedest			_	_								T	
Sauk C	ity,	Wis	con	sin					NORTHING	i: 1	62601	EASTING:	654945
DRILLER:		G	. Scal	lon	LOGGED BY:	C	C. Kehl		START DATE: 11/18/20 EI			END DATE:	11/18/20
SURFACE ELEVATION:		754.0	ft	RIG: 8	504	METHOD:	Mud Rotar	y	SURFACIN	G:	Gravel	WEATHER:	Sunny, 45°F
Elev./ Depth ft	Water Level		(Soil		escription of Ma 02488 or 2487; 1110-1-2908	Rock-USACE	EM		Blows (N-Value) Recovery	q _₽ tsf	MC %	Tests or	Remarks
			light		ADED SAND (S noist to wet, me VIUM)				12-14-19 (33) 18" 17-19-22 (41) 18" 10-13-15 (28) 18" 17-30-31 (61) 18"			PID=1.1 ppm PID=1.2 ppm PID=1.1 ppm PID=1.7 ppm	
631.0 123.0			to w	hite, high	FORMATION, S lly weathered, s bedded, highly	oft, very fine-	tan — 125 — — —		20-49-48 (97) 18"			PID=0.9 ppm	
 -				Co	ontinued on ne	ext page	_						
B2008520							tertec Corpora	tion	г	Drint Data	01/29/2021	B.	-1 page 4 of 5

Project	Nu	mber B	3200852	0				BORING:	10111111101	ogy chock	B-1	or appreviations
			luation					LOCATION:	See atta	ched sket		
				alking Iron	Trail							
Pedest	riar	Bridge)	_								
Sauk C	ity,	Wiscor	nsin					NORTHING	: 10	62601	EASTING:	654945
DRILLER:		G. Sca	allon	LOGGED BY:		C. Kehl		START DAT	E:	11/18/20	END DATE:	11/18/20
SURFACE ELEVATION:		754.0 ft	RIG: 85	504	METHOD:	Mud Rota	ıry	SURFACING	3 :	Gravel	WEATHER:	Sunny, 45°F
				escription of Ma			Φ	Blows				
Depth ft	Water	(So	oil-ASTM D	2488 or 2487; 1110-1-290		CE EM	Sample	(N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
_				ORMATION, Someon of the second								
E				pedded, highly	130 -					PID=0.9 ppm		
623.5 130.5	-			=	100/2"			Water observ				
-				END OF BOI		_		(REF) 2"			feet while dril	ling.
F			Borir	ng immediate	ly grouted	_						
F												
F						135 -						
E						133						
E												
E												
F						_						
F						- 140 -						
F						140 -						
F						_						
F						_						
F						_						
						- 145 -						
F						145-						
						_						
E						-]					
Ł						-						
E						150 -						
Ł						150 -						
E						_						
E						-						
Ē						_						
E						155						
Ē						155 -]					
F						-	7					
F						-	7					
F						-	1					
F						-	1					
						-						
B2008520					Broun	Intertec Corpo	ration		Print Data:	11/29/2021		8-1 page 5 of 5

Project	oject Number B2008520										BORING: B-2					
Geotec						_					LOCATION:	See att	ached sket	ch		
Great S Pedesti				rail/\	Walking	Iron	Trail									
Sauk C				sin							NORTHING	:	162507	EASTING:	655080	
DRILLER:		G	. Scal	lon	LOGGE	ED BY:		C. ł	Kehl		START DAT	E:	12/08/20	END DATE:	12/08/20	
SURFACE ELEVATION:		740.5	ft	RIG:	8503		METHOD:	N	Лud Rotar	у	SURFACING	3:		WEATHER:	Cloudy, 30°F	
Elev./ Depth ft	Water Level		(Soi	I-ASTN	Description I/ D2488 or 1110-	n of Ma 2487; 1-2908	Rock-USA	CE E	M	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks	
- - - -			Air						_							
738.2 2.3			WAT	ER												
 																
-									5—							
_									_							
<u> </u>									_							
_									_							
-									_							
-									10 —							
_ 									_							
_									_							
- -									_							
 -									_							
-									15 —							
- -									_							
- -																
_																
<u>-</u>									20 —							
_									_							
-									_							
-									_							
-									_							
-									25 —							
_ 									_							
									_							
_									_							
<u> </u>									_							
<u> </u>									30 —							
 -									_							
					Continued	on ne	ext page		_							

The Science Y		D000	0500					Termino	ology sheet	for explanation	of abbreviations
		ber B200					BORING:	0 "		B-2	
Great S Pedesti	auk S rian B	ridge	l/Walking Iron	Trail			LOCATION:	See atta	ached sketo	ch	
Sauk C	ity, W	isconsin					NORTHING:	1	62507	EASTING:	655080
DRILLER:		G. Scallon	LOGGED BY:		C. Kehl		START DATE: 12/08/20			END DATE:	12/08/20
SURFACE ELEVATION:	74	0.5 ft RIC	6: 8503	METHOD:	Mud Rota	ıry	SURFACING	SURFACING: WEATHER			
Elev./ Depth ft	Water Level	(Soil-AS	Description of Ma TM D2488 or 2487; 1110-1-2908	Rock-USACE	EEM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
707.5		WATER					2.4.0.0			*NI=+ =======	ı
_ 33.0 _ _ _			Y GRADED SAND (S wn, wet, loose to ver UM)		ned, - 35 -		3-4-6-8 (10*) 0"			*Not screened *No recovery	l
					- - - 40 -		34-34-62-83 (96) 24"			PID=2.8 ppm	
-		With Li.	mestone at 43 to 45	feet	- - - 45 -		34-40-47 (87) 18"			PID=1.4 ppm	
- - - - - - - - -					- - 50 -		5-5-6 (11) 18"			PID=0.7 ppm	
688.5 _ 52.0 _ _ _ _ _ _ _			AND (SM), light brov ALLUVIUM)	vn, wet, medi	um - - 55 -		5-6-5 (11) 18"		25	P200=18% PID=0.9 ppm	
683.5 57.0			Y GRADED SAND (S wn, wet, medium der UM)		ned, - - 60 -		5-7-7 (14) 18"			PID=0.9 ppm	
- - - - -		Trace (Gravel at 63 feet	.	- - -		11-13-15 (28) 18"			PID=0.7 ppm	
B2008520			Continued on ne		ntertec Corpo			rint Dat-	01/29/2021	R-	·2 nage 2 of 5

See Descriptive Terminology sheet for explanation of abbreviations

Project	Nu		r B	200852	20				BORING:	Tellilli	nogy sileel	B-2	of abbreviations
Geotec									LOCATION:	See atta	ched sketo		
Great S	aul	κ Sta	ite 7	Trail/W	alking Iron	Trail							
Pedesti												T	
Sauk C	ity,	Wise	con	sin					NORTHING:	1	62507	EASTING:	655080
DRILLER:		G	6. Sca	llon	LOGGED BY:		C. Keh	l	START DATI	E:	12/08/20	END DATE:	12/08/20
SURFACE ELEVATION:		740.5	ft	RIG: 8	503	METHOD:	Mud	Rotary	SURFACING	∋ :		WEATHER:	Cloudy, 30°F
Elev./ Depth ft	Water Level		(So		escription of Ma D2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
- - - - - - - - - - - - - - - - - - -			light	ORLY GR i brown, v LUVIUM)	ADED SAND (S vet, medium del	SP), fine-gra	ained, e	65 —	6-9-10 (19) 18"			PID=0.0 ppm	
- - - - - - - -								75 —	11-13-12 (25) 15"			PID=0.0 ppm	
- - - - - - - -								80 —	12-11-13 (24)			PID=0.0 ppm	
- - - - - - - -								85	9-15-22 (37)			PID=0.0 ppm	
- - - - - - -								90 —	13-19-26 (45)			PID=0.0 ppm	
- - - - - - - -			Tra		el at 93 feet			95	24-19-20 (39) 14"			PID=0.2 ppm	
P2009520				Co	ontinued on ne	ext page		Corneration			01/20/2021		10 nama 2 af E

B2008520 Braun Intertec Corporation Print Date:01/29/2021 B-2 page 3 of 5

The Science Y									e Termino	logy shee			of abbreviations
_			r B200852	20				RING:			B-	2	
	auk	Sta		alking Iron	Trail		LO	CATION:	: See atta	ched sket	ch		
Sauk Ci	ity,	Wis	consin				NO	RTHING	6: 10	62507	EASTIN	NG:	655080
DRILLER:		G	S. Scallon	LOGGED BY:	C. Ke	ehl	STA	ART DAT	E:	12/08/20	END D	ATE:	12/08/20
SURFACE ELEVATION:		740.5	ft RIG: 8	503	METHOD: Mu	ıd Rotary	SUI	RFACIN	G:		WEATH	HER:	Cloudy, 30°F
Elev./ Depth ft	Water Level				Rock-USACE EM	Sample	Blo (N-V Reco	ows ⁄alue) overy	q _p tsf	MC %	Te	ests or	Remarks
POORLY GRADED SAND (SP), fine-grained, light brown, wet, medium dense to dense (ALLUVIUM) (ALLUVIUM) 638.5							(3	1-24 85) 6"			PID=0.	8 ppm	
POORLY GRADED SAND (SP), fine to coarse grained, with Gravel, and Limestone, brown,						105		3-36 69)			PID=4.	1 ppm	
- - - - 631.6 - 108.9			white, highly	FORMATION, S weathered, mod ned, thin bedde			(R	0/2" EF) 2"				f advar	I nce rounded to e minute
630.6 109.9			WONEWOC white to green soft, very fine	FORMATION, S nish tan, highly v -grained, thin be	ANDSTONE, weathered, very edded, intensely	—110 — —			0		50		Run 1
			fractured, with	h SHALEY layer	S		0	100	1	3260		90	
- 626.0						_[[-		2	_	120		
114.5					ANDSTONE, tan				2				Run 2
- 624.6 - 115.9				iered, hard, very isely fractured	fine-grained, thir	\ _			1				
_ 110.0 			WONEWOC	FORMATION, S			20	80	0	2790	100	98	
-			moderately ha		weathered, ained, thin bedde	d, —	20	00	0	2/90	100	90	
_			highly fracture	ed		-[1			0	_			
E						120 —			0				Run 3
<u>619.2</u>			EALLO: AIRE	EOD! (ATION	CANDOTORIC		-		0	1			
121.3				FORMATION, Some red, fine			78	97	0	3720	70	95	
_				erately fractured		-	, ,	"	0	- 5, 20	'		
_						-[]			0	-			
<u>615.2</u>				CODMATION:	CANDOTONE	125 —			1				Run 4
125.3 _ _ _ _			gray, slightly thin bedded,		SANDSTONE, l, very fine-graine ed, with SHALEY		17	95	0	2790	150	95	
				ontinued on ne	xt page		RQD %	Recovery %	Drilling Rate (min/ft)	Bit Pressure (psi)	Water Pressure (psi)	Water Return	n Remarks

See Descriptive Terminology sheet for explanation of abbreviations

Project	Nu	mbe	r B2	200852	0						RING:		-97	B-		or approviduorio
Geotec	hni	cal E	val	uation						LOC	CATION:	See attac	ched sketo	h		
Great S Pedest					alking Iron	Trail										
Sauk C										NOI	RTHING	: 16	62507	EASTI	NG:	655080
DRILLER:			. Scal		LOGGED BY:		C. Keh	l		STA	RT DAT		12/08/20	END D		12/08/20
SURFACE ELEVATION:		740.5	ft	RIG: 8	503	METHOD:	Mud	Rotary	/	SUF	RFACING	 3:		WEATH	HER:	Cloudy, 30°F
Elev./ Depth ft	Water Level		(Soi		escription of Ma 02488 or 2487; 1110-1-2908	Rock-USAC	E EM		Sample	RQD %	Recovery %	Drilling Rate (min/ft)	Bit Pressure (psi)	Water Pressure (psi)	Water Return %	Remarks
611.6					FORMATION, weathered, hard							0				
_ 128.9 _			thin	bedded, i	ntensely fractur			130 —				2				Run 5
<u> </u>			EAU	CLAIRE	1 2 to 8 inches FORMATION,			J —				2				
-			gray thin	, slightly v bedded. i	weathered, hard intensely fractur	l, very fine-ը ed	grained,	_		34	100	3 1	2560	180	95	
-				,	,			_		34	100	1	2300	160	95	
												1				
<u> </u>								135 —				2				Run 6
												0				
- -								_		59	100	1	2560	150	90	
-												1				
600.6								140 —				1				
139.9 					END OF COF	RING		_								
-				Bori	ng immediatel	y grouted										
<u> </u>								_								
_								_								
_								145 —								
_																
_																
_																
 -								450								
								150 —								
_																
<u>-</u>																
<u> </u>																
<u> </u>								155 —								
_								-								
_								\dashv								
<u> </u>								\dashv								
 -								\dashv								

B2008520 Braun Intertec Corporation Print Date:01/29/2021 B-2 page 5 of 5

Project	: Nu	mbe	r B2	20085	20						BORING:			B-3	
Geotec	hnic	cal E	valı	uatio	n		-				LOCATION:	See atta	ached sketo	ch	
Great S Pedest				raii/v	vaikin	g Iron	Iraii								
Sauk C				sin							NORTHING:	: 1	162411	EASTING:	655218
DRILLER:		G	i. Scal	lon	LOG	GED BY:		C. Ke	ehl		START DATI	E:	12/10/20	END DATE:	12/10/20
SURFACE ELEVATION:	:	740.5	ft	RIG:	8503		METHOD:	М	ud Rotar	у	SURFACING	 ∋:		WEATHER:	Sunny, 40°F
Elev./ Depth ft	Water Level		(Soil		D2488	tion of Ma or 2487; 10-1-2908	Rock-USAC	CE EM	1		Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
_			Air						_						
- 738.1									_						
2.4			WAT	ER					_						
_									_						
-									5 —						
- 									_						
_									_						
_ -									10 —						
-									_						
_ - -									_						
<u>-</u>									_						
- -									15 —						
_ 									_						
-									_						
-															
<u>-</u>									20 —						
- -									_						
_ 									_						
 -									_						
- - 715.7						05.11.451	(05)		25 —		9-11-22				
24.8 			Lime	RLY G stone,	brown, v	GRAVEL wet, dens	. (GP), with e (ALLUVIL	JM)			(33) 18"			PID=5.3 ppm	
713.5 27.0			POO	RIVG	RADED	SAND (S	SP), fine-gra	ained		<u> </u>					
			light	brown, UVIUM	wet, loc	se to me	dium dense	enicu,	_						
<u>-</u> -									30 —	X	1-2-3 (5) 11"			PID=6.6 ppm	
-									_		11"				
				(Continu	ed on ne	ext page		_						

Project)						BORING:			B-3	
Geotec			-									LOCATION:	See att	ached sket	ch	
Pedest					Na	lking Iro	n	Irail								
Sauk C												NORTHING:	1	162411	EASTING:	655218
DRILLER:		G	S. Scal	llon		LOGGED B	Y:		C. I	Kehl		START DAT	E:	12/10/20	END DATE:	12/10/20
SURFACE ELEVATION:		740.5	ft	RIG:	85	03		METHOD:	ı	Mud Rota	ry	SURFACING	 ∋:		WEATHER:	Sunny, 40°F
Elev./ Depth ft	Water Level		(Soi	I-ASTN		scription of 2488 or 248 1110-1-29	37; I	Rock-USA(CE E	M	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
			light		, we	DED SAND				35 - - -		4-5-5 (10) 12"			PID=7.8 ppm	
- - - - - - - -										40 - - -		6-8-12 (20) 14"			PID=11.5 ppm	
697.5 43.0 - - - - - - - - - - - - - - - - - - -				IDY SIL se (ALL		ML), light bi IUM)	row	n, wet, med	dium	- 45 - -		7-11-15 (26) 15"			PID=9.8 ppm	
48.0 - - - - - - - - - - - - - - - - - - -						DED SAND						6-10-15 (25) 18"			PID=4.8 ppm	
53.0 - - - - - - - - - - - - -				IDY SIL LUVIUN		ML), light bi	row	n, wet, den	ise	- 55 - -		21-22-19 (41) 16"			PID=5.7 ppm	
58.0 - 58.0 			light	ORLY G brown LUVIUN	, we	DED SAND t, medium () (S den	P), fine-gra	ained dens	60 –		6-9-8 (17) 10"			PID=5.8 ppm	
_ - -				(Cor	ntinued on	ne	xt page		-	-					

The Science You Buil		20025	20			,		e Iermino	logy sheet		of abbreviations
Project Nu Geotechni							BORING:	Co	ab ad aleet	B-3	
			ı /alking Iron	Trail			LOCATION:	See atta	cned sketo	cn	
Pedestriar											
Sauk City,							NORTHING	: 10	62411	EASTING:	655218
DRILLER:	G. Sca	llon	LOGGED BY:		C. Keh	l	START DAT	E:	12/10/20	END DATE:	12/10/20
SURFACE ELEVATION:	740.5 ft	RIG: 8	3503	METHOD:	Mud	Rotary	SURFACING	3:		WEATHER:	Sunny, 40°F
Elev./ Jage 7	(So		Description of Ma D2488 or 2487; 1110-1-2908	Rock-USAC	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
-	light		RADED SAND (S wet, medium der			65	18-15-19 (34) 15"			PID=4.6 ppm	
- - - - - - - - - -						70 —	8-11-14 (25) 16"			PID=4.7 ppm	
- - - - - - - -						75	8-11-14 (25) 15"			PID=3.7 ppm	
- - - - - - -						80 —	9-14-15 (29) 18"			PID=3.6 ppm	
- - - - - - - -						85	12-15-22 (37) 14"			PID=6.1 ppm	
- - - - - - - -						90 —	18-27-35 (62) 15"			PID=4.4 ppm	
B2008520		С	ontinued on ne			95 Sorporation	12-12-18 (30) 18"		01/29/2021	PID=2.8 ppm	-3 nage 3 of 5

Project	Nu	mbe	r B2	2008	520						ВОГ	RING:		- 07	B-	3	
Geotec Great S Pedesti	hni aul	cal E < Sta	val te T	uatic	n	g Iron	Trail				LOC	CATION:	See atta	ched sket	ch		
Sauk C			_	sin							NOI	RTHING	i: 1	62411	EASTI	NG:	655218
DRILLER:		G	. Scal	lon	LOG	GED BY:		C.	Kehl		STA	RT DAT	E:	12/10/20	END D	ATE:	12/10/20
SURFACE ELEVATION:		740.5	ft	RIG:	8503		METHOD:		Mud Rota	ry	SUF	RFACIN	 G:		WEATH	HER:	Sunny, 40°F
	Water		(Soi	I-ASTI	M D2488	ion of Ma or 2487; 0-1-2908	Rock-USA	ACE E	EM	Sample	(N-V	ows alue) overy	q _₽ tsf	MC %	Te	ests or	Remarks
- - - - - - - - - - - - - - - - - - -			light		ı, wet, me		SP), fine-g nse to ver				(5	0-31 i1) 3"			PID=3.	8 ppm	
	-		We and	athere I white	d Sandst at 106 fe	one, darl et	Limeston k brown, b	rown	105 -		(7	33-42 '5) 4"			PID=0.	9 ppm	
- - - - -			gree fine-	nish ta graine	an, mode	ately we dded, int	athered, s ensely fra	oft, ve		_		0/2" EF)			to near	est who	nce rounded ble minute
629.2							SANDSTO		_	П			0		 	0 ppm	Run 1
_ 111.3 							athered, s ensely fra						0				
_					EY layers		,		_		7	40	0	2320	80	95	
-									115 -				0				
- 604.0									113				2		150		
624.2 116.3	1		10W	NEWC	C FORM	ATION, S	SANDSTO	NE,					3				Run 2
_							weathered						1				
-					rained, tr EY layers		d, highly f	ractur	ea, –		55	100	1	2790	100	100	
— - 620.7					,				_		55	100	-	2/90	100	100	
119.8	1						SANDSTO		120 -				0				
_							oderately d, highly f		ed -	╂			1				Run 3
<u> </u>			7	9	, •1	2.50	, .g, .		-				0	2790			
616.9									-	-			0				
123.6			EAU	CLAI	RE FORM	MATION,	SANDST	ONE,			15	100	4		50	95	
-			gray	, unwe ded hi	eathered, ghly fract	hard, ver ured	y fine-grai	ıned, t	thin 125 -	-			0	1860			
-			2540		J J . 1 4 0 1	• • •			-				0				Dup 4
<u>-</u>									-				0				Run 4
_			1-ir	nch thi			127 1/2 fe	eet					1	D11 5		W-t- D	
					<u>Continu</u>	<u>ed on ne</u>	ext page			L R	QD %	Recovery %	Drilling Rate (min/ft)	Bit Pressure (psi)	Water Pressure (psi)	Water Return %	Remarks

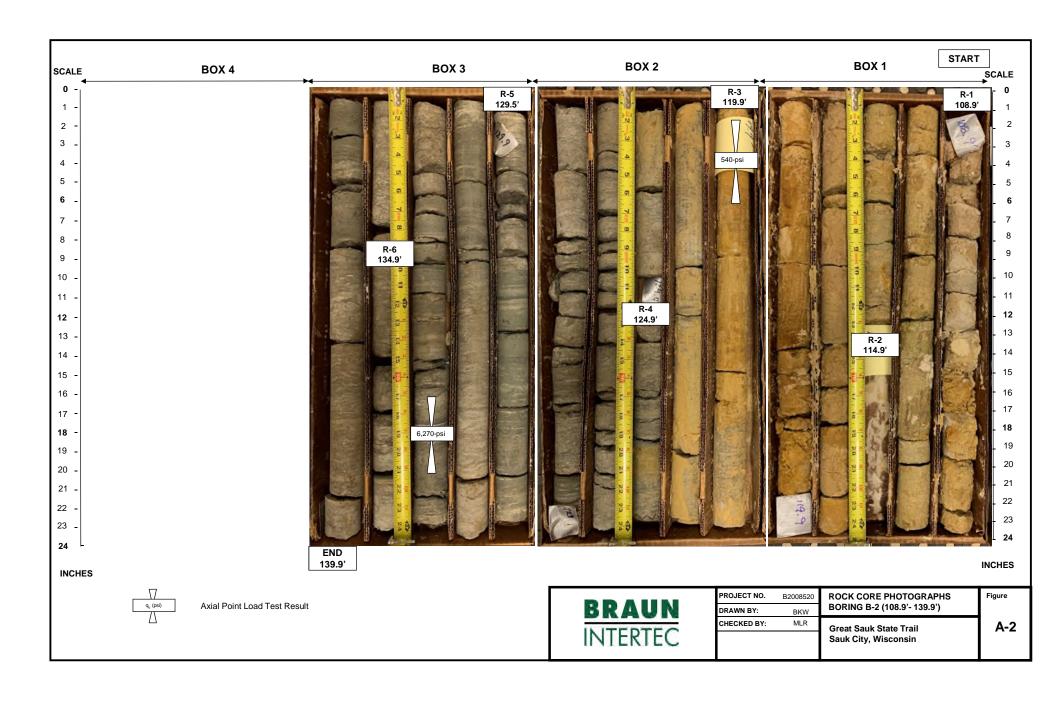
See Descriptive Terminology sheet for explanation of abbreviations

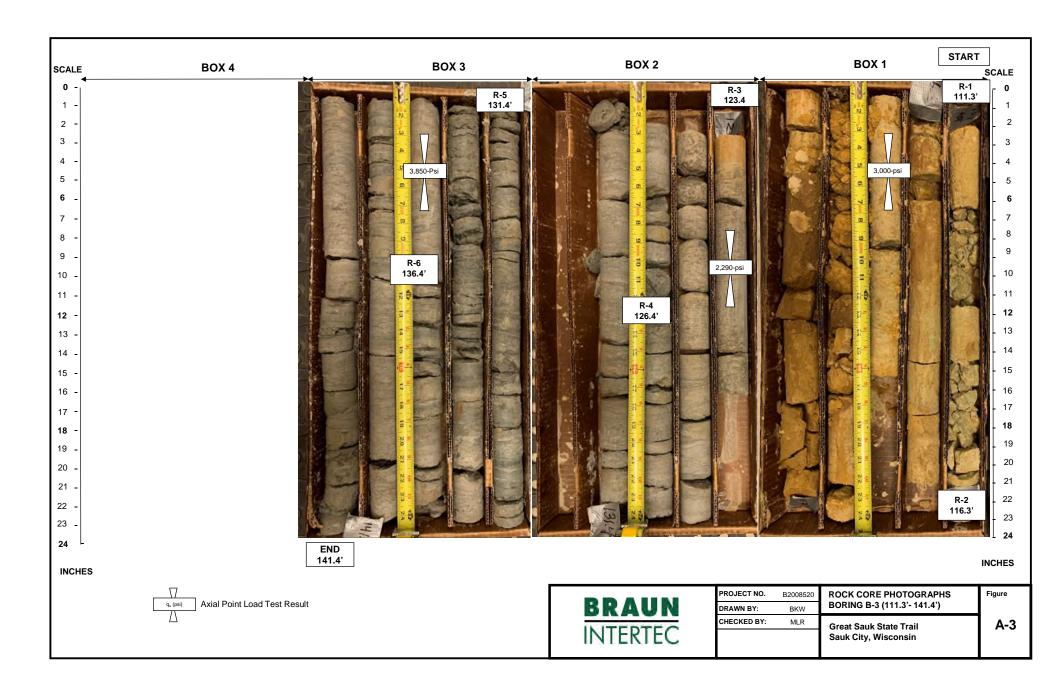
																	or approviations
Project)					ВО	RING:			B-	.3	
Pedestr	aul rian	k Sta Brid	ite T dge	「rail/V		lking Iron	Trail				LO	CATION:	See attac	ched sketo	ch .		
Sauk Ci	ity,	Wis	con	sin							NO	RTHING	: 16	62411	EASTI	NG:	655218
DRILLER:		G	S. Sca	llon		LOGGED BY:		C. Kel	nl		STA	ART DAT	E:	12/10/20	END D	ATE:	12/10/20
SURFACE ELEVATION:		740.5	ft		85		METHOD:	Mud	d Rotar	У	SUI	RFACING	G:		WEATH	HER:	Sunny, 40°F
Elev./ Depth ft	Water Level			il-ASTM	1 D:	scription of Ma 2488 or 2487; 1110-1-2908	Rock-USAC 3)			Sample	RQD %	Recovery %	Drilling Rate (min/ft)	Bit Pressure (psi)	Water Pressure (psi)	Water Return %	Remarks
-			EAU	J CLAIR	RE I	FORMATION, ered, hard, ver	SANDSTON	IE, ed thin					2				
<u> </u>						fractured	y iiio graine	, a	130 —			90	1	2790	120	100	
_									_				1				
_									_				3				Run 5
<u> </u>				to 8-ınch 2 feet	h th	nick SHALEY la	ayers startın	g at	_				4				
<u> </u>									_		32	100	6	2320	180	90	
_									135 —				5				
-									_				1				
<u>-</u>									_				3				
- 													4				
<u>-</u>											32	100	1	2790	180	90	
<u>-</u>									140 —				1				
_ 599.1													4				
141.4					ı	END OF COF	RING		_								
<u> </u>									_								
-									_								
-									145 —								
_									_								
_									_								
_																	
_									150 —								
									_								
									_								
									_								
									_								
_									155 —								
									_								
									_								
									_								
										+							

B2008520 Braun Intertec Corporation Print Date:01/29/2021 B-3 page 5 of 5

Project	Nu	mber F	3200852	0					BORING:	TCTTTTTTO	ogy sneet	B-4	or approviations
Geotec								L	LOCATION:	See atta	ched sket		
				alking Iron	Trail								
Pedesti													
Sauk C		_							NORTHING	: 10	62317	EASTING:	655354
DRILLER:		G. Sc	allon	LOGGED BY:		C. Kehl			START DAT	E:	12/11/20	END DATE:	12/11/20
SURFACE ELEVATION:		751.0 ft	RIG: 85	503	METHOD:	6 1/4	l" HSA		SURFACING	 Э:	Railroad	WEATHER:	Snow, 30°F
			De	scription of Ma	ıterials		1	T	D.		ballast		
Elev./ Depth ft	Water Level		oil-ASTM D	2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	(I	Blows N-Value) Recovery	q _p tsf	MC %	Tests or F	Remarks
_ 750.3				T, 8 inches	a ta madiun	•							
— 0.7 -			ined, black	AND (SM), fine , moist	e to mealun	1-							
			,	,									
_ 3.0				Y GRADED SA		LT (SP-							
-		SN SN	l), fine-grair	ned, brown, mo	oist			7	2-2-2				
-							5-		(4) 18"			PID=0.2 ppm	
-							-		18				
- 742.0							_						
743.0		FIL	L: POORL	Y GRADED SA	ND (SP), fi	ne-							
F				orown, moist to					2-3-3				
_							10	7	(6)			PID=0.1 ppm	
F-							-	7	12"				
<u></u>							_						
<u>-</u>							_						
<u>-</u>							_						
<u> </u>							15	7	3-2-3 (5)			PID=0.0 ppm	
<u>-</u>							$\perp \!\!\! \perp$	7	18"			Switched to m	ud rotarv
												drilling at 16 fe	
_													
E													
731.0	\Box						20-	7	5-8-10			PID=0.9 ppm	
_ 20.0		FIL	L: POORLY	Y GRADED GF Sand and Lime	RAVEL (GP), with	IX		(18) 13"			г ID=0.9 ррIII	
F		we we		Sanu anu Liin	estone, ligh	t brown,							
-													
-													
-							_	,	5-10-12				
 							25		(22)			PID=0.4 ppm	
<u></u>							+	4	16"				
<u> </u>							\dashv						
F							\dashv						
F							_		14.0.0				
F							30 -	7	14-9-9 (18)			PID=0.0 ppm	
<u></u>							1	7	15"				
<u> </u>			^	m41m									
B2008520			Co	ntinued on ne		n Intertec C	\			Daine Date of	01/29/2021	 	4 page 1 of 5

The Science You Bu		D000000				S		Termino	logy sheet	for explanation	of abbreviations
Project Nu							BORING:	<u> </u>		B-4	
Geotechn Great Sau Pedestria	ık Stat	e Trail/W	alking Iron	Trail			LOCATION:	See atta	ached sket	ch	
Sauk City,	, Wisc	onsin					NORTHING	: 1	162317	EASTING:	655354
DRILLER:	G. \$	Scallon	LOGGED BY:		C. Kehl		START DAT	E:	12/11/20	END DATE:	12/11/20
SURFACE ELEVATION:	751.0 ft	RIG: 8	503	METHOD:	6 1/4	" HSA	SURFACING	G:	Railroad ballast	WEATHER:	Snow, 30°F
Elev./ ja 7	600		escription of Ma 02488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
- - - - - - - - -	la 💢		Y GRADED GF Sand and Lime		it brown,	35 —	20-21-18 (39) 6"			PID=0.5 ppm	
713.0 - 38.0 		SANDY SILT ense (ALLU	(ML), light brow VIUM)	n, wet, me		40	10-13-15 (28) 14"			PID=0.0 ppm	
 						45	9-11-18 (29) 15"			PID=0.0 ppm	
703.0 48.0	li	POORLY GR ght brown, v ALLUVIUM)	ADED SAND (S vet, medium to v	SP), fine-gra Very dense		50	11-13-13 (26) 15"			PID=0.4 ppm	
 						55	8-13-14 (27) 11"			PID=0.0 ppm	
- - - - - - - -						60	9-9-13 (22) 15"			PID=0.0 ppm	
- - - - - -		Co	ontinued on ne		n Intertoc C				01/20/2021	B	A page 2 of F


The Science Yo		D00	0050						Termino	logy sheet	for explanation of	of abbreviations
Project				0				BORING:			B-4	
Geotech				ما المواليا	Tre:			LOCATION:	See atta	ached sket	ch	
Pedestr	ian Br	idge		lking Iron	ıraıı							
Sauk Ci	ty, Wis	consi	n					NORTHING	: 1	62317	EASTING:	655354
DRILLER:	•	G. Scallon		LOGGED BY:		C. Kehl		START DAT	E:	12/11/20	END DATE:	12/11/20
SURFACE ELEVATION:	751.	0 ft RI	IG: 85		METHOD:	6 1/4	1" HSA	SURFACING	3:	Railroad ballast	WEATHER:	Snow, 30°F
Elev./ Depth ft	water Level	(Soil-A		scription of Ma 2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or I	Remarks
- - - -			own, we	NDED SAND (Set, medium to		ained,	65	7-7-9 (16) 4"			PID=1.1 ppm	
- - - - - - - - -							70 —	7-8-12 (20) 16"			PID=0.4 ppm	
- - - - - - -							75	12-13-14 (27) 12"			PID=1.0 ppm	
- - - - - - -							80 —	11-12-14 (26) 18"			PID=0.0 ppm	
-							85	13-24-23 (47) 17"			PID=0.0 ppm	
-							90 —	19-22-18 (40) 12"			PID=0.4 ppm	
- - - - - -			Coi	ntinued on ne	ext page		95	14-15-14 (29) 9"			PID=1.1 ppm	



Project		ber F	3200852	0				BORING:	Termino	logy sneet	for explanation B-4	or appreviations
Geoteci								LOCATION:	See atta	ached sket		
	auk S	State	Trail/Wa	alking Iron	Trail				_ 5.110	2.30		
Sauk Ci								NORTHING:	: 1	62317	EASTING:	655354
DRILLER:		G. Sc	allon	LOGGED BY:		C. Kehl		START DAT	 E:	12/11/20	END DATE:	12/11/20
SURFACE ELEVATION:	75	1.0 ft	RIG: 85	503	METHOD:	6 1/4" F	łSA	SURFACING	 ∋:	Railroad ballast	WEATHER:	Snow, 30°F
	Water Level	(Sc		escription of Ma 2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _p tsf	MC %	Tests or	Remarks
- - - -		ligh	ORLY GRA nt brown, w LLUVIUM)	ADED SAND (Set, medium to v	SP), fine-gravery dense	ained,						
- - - - -		Fi	ne to coars	e-grained laye	r at 100 fee	et 100		17-19-32 (51) 15"			PID=1.8 ppm	
- - - - - - - - -						105		21-34-60 (94) 12"			PID=1.7 ppm	
		Fi	ine to coars	e-grained belo	w 112 feet	110		10-10-21 (31) 18"			PID=3.0 ppm	
						115	5	14-17-22 (39) 18"			PID=2.8 ppm	
- - - - - -						120		15-24-33 (57) 18"			PID=0.0 ppm	
627.0 124.0		Lin		ADED GRAVEL ad Sandstone, v			<u>-</u> 5	63-100/2" (REF) 2"			PID=0.0 ppm	
623.0 128.0			Co	ntinued on ne	ext page	_	-					
										<u> </u>		

Project Number B2008520 Geotechnical Evaluation						See Descriptive Terminology sheet for explanation of abbreviations BORING: B-4						
							LOCATION: See attached sketch					
	auk S	tate ⁻	Trail/Wa	alking Iron	Trail			200, 11014.				
Sauk Ci	ity, Wi	scon	ısin					NORTHING:	1	62317	EASTING:	655354
DRILLER:		G. Sca	allon	LOGGED BY:		C. Keł	nl	START DATE	≣:	12/11/20	END DATE:	12/11/20
SURFACE ELEVATION:	75′	1.0 ft	RIG: 85	503	METHOD:	6 1	/4" HSA	SURFACING	6 :	Railroad ballast	WEATHER:	Snow, 30°F
Elev./ Depth ft	Water Level	(So		escription of Ma 2488 or 2487; 1110-1-2908	Rock-USA	CE EM	Sample	Blows (N-Value) Recovery	q _₽ tsf	MC %	Tests or	Remarks
-				ADED SAND (S			130 —	19-21-29 (50) 12"			PID=0.0 ppm	
617.0 134.0 - - - - -				H), contains ler d (ALLUVIUM)		dy Silt,	135 —	20-18-19 (37) 18"			PID=0.1 ppm	
- 612.0 - 139.0 - 611.0 - 140.0 			, highly we	FORMATION, Sathered, fine-gEND OF BOR	rained RING	NE, tan,	145 —	100/2" (REF) 1"			Water observ feet while dril	
- - - -							-					

Appendix B

Braun Intertec Corporation 2309 Palace Street La Crosse, WI 54603 Phone: 608.781.7277
Fax: 608.781.7279
Web: braunintertec.com

Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures (Method C) ASTM D 7012

Date: December 28, 2020 **Project Number:** B2008520

Client: Lisa Wilson Project Description: Great Sauk State Trail

Sauk County Wisconsin 505 Broadway Baraboo, WI 53913

Sample Data

Date Sampled: 12/8/2020
Samples Obtained By: Braun Drilling, LLC
Date Received: 12/21/2020
Sample Preparation: Trim/ Polish

Laboratory Data

ASTM D4543

Limits

Sample Number:	B-2 (120)	B-2 (133)	B-3 (118.5)	B-3 (124.5)	B-3 (136)	
Date Tested:	12/28/2020	12/28/2020	12/28/2020	12/28/2020	12/28/2020	
Rock Type:						
Moisture Condition During Testing:	As Received	As Received	As Received	As Received	As Received	
Diameter (in.):	1.85	1.85	1.84	1.79	1.84	
Length (in.):	3.51	3.41	3.75	3.81	3.82	
Length-to-Diameter Ratio (L/D):	1.9	1.8	2.0	2.1	2.1	$2.0 \le L/D \le 2.5$
Side Tolerance, Maximum (in.)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	\leq 0.020 in.
End Tolerance, Maximum (in.)	< 0.001 in	< 0.001 in	< 0.001 in	< 0.001 in	< 0.001 in	\leq 0.001 in.
Perpendicularity Deviation (°)	< 0.001 in	< 0.001 in	< 0.001 in	< 0.001 in	< 0.001 in	≤ 0.250°
Parallelis m Deviation (°)	< 0.001 in	< 0.001 in	\leq 0.001 in	< 0.001 in	< 0.001 in	≤ 0.25°
Maximum Load (lbs):	1,449	16,875	7,968	5,768	10,253	
Area (in ²):	2.69	2.69	2.66	2.52	2.66	
Compressive Strength (psi):	540	6,270	3,000	2,290	3,850	
Compressive Strength (MPa):	4	43	20	16	26	

Remarks:

Reviewed By:

Brandon Wright Senior Engineer

Geotechnical Testing Various ASTM

2309 Palace Street La Crosse, WI 54603 Phone: 608-781-7277 Client: Project:

Sauk County Wisconsin 505 Broadway Baraboo, WI 53913

Pedestrian Bridge Sauk City, WI 53583

Great Sauk State Trail/Walking Iron Trail

B2008520

Sample Information

Metafield ID: 355817

Completed Date: 12/31/2020 Prepared By: Streier, Jim

	Laboratory Results Summary											
Boring	Sample	Depth (ft)	MC (%)	Wash Loss (%)	LL	PL	PI	Organic Content %	Dry Density (pcf)	Resistivity (ohm-cm)	Q _u (tsf)	Specific Gravity
B-2	5	53.0	25.2	18								

General

The test is for informational purposes. Results:

2309 Palace Street La Crosse, WI 54603 Phone: 608-781-7277 Client:

Sauk County Wisconsin 505 Broadway Baraboo, WI 53913

Great Sauk State Trail/Walking Iron Trail Pedestrian Bridge

Sauk City, WI 53583

Project:

B2008520

Sample Information

Sample Number: 355818 Depth (ft): 88

Boring Number: B-2 Sampled By: Drill Crew

Sample Date: 12/21/2020

Received Date: 12/31/2020 Lab: 11001 Hampshire Ave S, Bloomington, MN

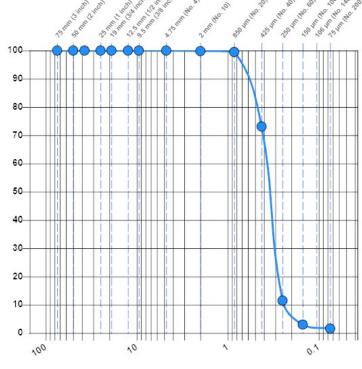
% Passing

Tested Date: 12/31/2020 Tested By: Streier, Jim

Laboratory Data

Sieve Size	Passing (%)	Specification
4.75 mm (No. 4)	100.0	
2 mm (No. 10)	99.8	
850 µm (No. 20)	99.5	
425 μm (No. 40)	73.1	
250 µm (No. 60)	11.5	
150 µm (No. 100)	3.0	
75 μm (No. 200)	1.6	

 Sand (%)
 Silt & Clay (%)


 98.4
 1.6

 D10
 D30
 D60

 0.232
 0.303
 0.388

 CU
 CC

 1.67
 1.02

Particle Size (mm)

Classification: SP Poorly graded sand

General

2309 Palace Street La Crosse, WI 54603 Phone: 608-781-7277

Client: Project:

Sauk County Wisconsin

505 Broadway Baraboo, WI 53913 B2008520 Great Sauk State Trail/Walking Iron Trail

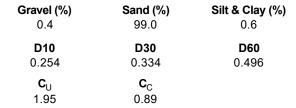
Pedestrian Bridge Sauk City, WI 53583

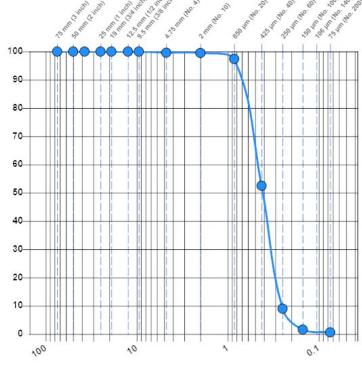
Sample Information

Sample Number: 355819 Depth (ft): 30

Boring Number: B-3 Sampled By: Drill Crew

Sample Date: 12/21/2020


Received Date: 12/31/2020 Lab: 11001 Hampshire Ave S, Bloomington, MN


% Passing

Tested Date: 12/31/2020 Tested By: Streier, Jim

Laboratory Data

Sieve Size	Passing (%)	Specification
9.5 mm (3/8 inch)	100.0	
4.75 mm (No. 4)	99.6	
2 mm (No. 10)	99.5	
850 µm (No. 20)	97.4	
425 μm (No. 40)	52.5	
250 μm (No. 60)	9.0	
150 µm (No. 100)	1.6	
75 µm (No. 200)	0.6	

Particle Size (mm)

Classification: SP Poorly graded sand

General

2309 Palace Street La Crosse, WI 54603 Phone: 608-781-7277 Client:

Sauk County Wisconsin 505 Broadway Baraboo, WI 53913

Great Sauk State Trail/Walking Iron Trail Pedestrian Bridge

Sauk City, WI 53583

Project:

B2008520

Sample Information

Sample Number: 355818 Depth (ft): 88

Boring Number: B-2 Sampled By: Drill Crew

Sample Date: 12/21/2020

Received Date: 12/31/2020 Lab: 11001 Hampshire Ave S, Bloomington, MN

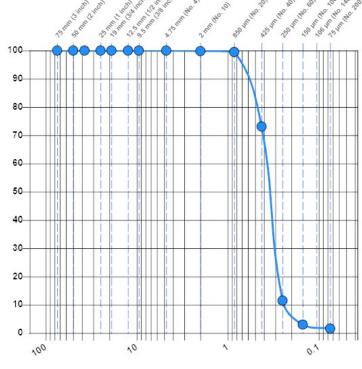
% Passing

Tested Date: 12/31/2020 Tested By: Streier, Jim

Laboratory Data

Sieve Size	Passing (%)	Specification
4.75 mm (No. 4)	100.0	
2 mm (No. 10)	99.8	
850 µm (No. 20)	99.5	
425 μm (No. 40)	73.1	
250 µm (No. 60)	11.5	
150 µm (No. 100)	3.0	
75 μm (No. 200)	1.6	

 Sand (%)
 Silt & Clay (%)


 98.4
 1.6

 D10
 D30
 D60

 0.232
 0.303
 0.388

 CU
 CC

 1.67
 1.02

Particle Size (mm)

Classification: SP Poorly graded sand

General

2309 Palace Street La Crosse, WI 54603 Phone: 608-781-7277

Client: Project:

Sauk County Wisconsin

505 Broadway Baraboo, WI 53913 B2008520 Great Sauk State Trail/Walking Iron Trail

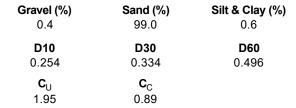
Pedestrian Bridge Sauk City, WI 53583

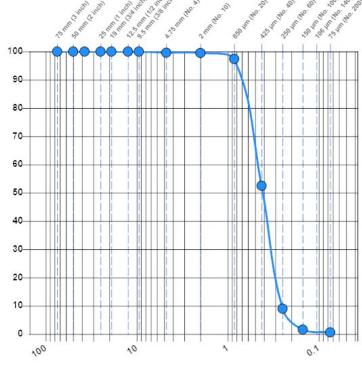
Sample Information

Sample Number: 355819 Depth (ft): 30

Boring Number: B-3 Sampled By: Drill Crew

Sample Date: 12/21/2020


Received Date: 12/31/2020 Lab: 11001 Hampshire Ave S, Bloomington, MN


% Passing

Tested Date: 12/31/2020 Tested By: Streier, Jim

Laboratory Data

Sieve Size	Passing (%)	Specification
9.5 mm (3/8 inch)	100.0	
4.75 mm (No. 4)	99.6	
2 mm (No. 10)	99.5	
850 µm (No. 20)	97.4	
425 μm (No. 40)	52.5	
250 μm (No. 60)	9.0	
150 µm (No. 100)	1.6	
75 µm (No. 200)	0.6	

Particle Size (mm)

Classification: SP Poorly graded sand

General