CLARK CREEK WATERSHED STUDY

TECHNICAL MEMORANDUM 3

JULY 2012

PREPARED FOR

SAUK COUNTY, WISCONSIN CONSERVATION, PLANNING AND ZONING DEPARTMENT

TABLE OF CONTENTS

1	INTRODUCTION									
2	DATA SOURCES AND METHODS									
	2.1	Data Sources	.2							
	2.2	Methods	.3							
3	FLO	OD MITIGATION PERFORMANCE	.5							
4	PLA	NNING LEVEL COSTS	.7							
5	CON	ICLUSIONS AND RECOMMENDATIONS	.8							
	5.1	Conclusions	.8							
	5.2	Recommendations	.8							

LIST OF ATTACHMENTS

FIGURES

FIGURE 1 – FLOOD MITIGATION MEASURE LOCATIONS

FIGURE 2 – WETLAND SCRAPE HYDRAULIC MODEL CROSS SECTION LOCATIONS

FIGURE 3 – SELECTED HYDRAULIC MODEL CROSS SECTIONS DOWNSTREAM ON CLARK CREEK

APPENDICES

APPENDIX A – WETLAND SCRAPE HYDRAULIC MODEL DETAILS

- APPENDIX B WATERSHED HYDROLOGIC MODEL LAYOUTS
- APPENDIX C PLANNING LEVEL COST ESTIMATES

1 INTRODUCTION

This memorandum summarizes analysis by Montgomery Associates: Resource Solutions, LLC (MARS) of several flood mitigation measures in portions of the headwaters of Clark Creek within Devil's Lake State Park. Recent discussions between DNR and Sauk County representatives have focused on flood mitigation measures that are consistent with DNR's existing management plan for the area. This study evaluated three options in the Quarry Tributary and Southern Tributary subwatersheds of Clark Creek (**Figure 1**):

- 1. Shallow wetland scrapes adjacent to headwater tributary channels to create additional flood storage.
- 2. Conversion of agricultural land in DNR's share cropping program to native prairie vegetation to reduce storm runoff.
- 3. Earthwork to create a hummocky topography in areas to be restored as prairie to provide detention of stormwater runoff from adjacent areas.

The scope of this study was to develop conceptual designs for these options, evaluate their effectiveness at flood mitigation, and develop planning level cost estimates to support decisions by Sauk County about how to proceed.

DATA SOURCES AND METHODS 2

2.1 DATA SOURCES

Watershed Hydrologic Model

Flood discharge of Clark Creek was evaluated using a rainfall-runoff model of the watershed constructed by Montgomery Associates using the U.S. Army Corps of Engineers watershed analysis program HEC-HMS. This model is a modified version of the model developed by the DNR for the Flood Insurance Study (FIS) for Clark Creek.

Clark Creek Hydraulic Model

The impact of reduced flood discharge on the water surface elevation, channel velocity and shear, and flooded valley width was evaluated using the hydraulic model developed in the FEMA FIS for Clark Creek, which uses the U.S. Army Corps of Engineers program HEC-RAS.

Rainfall and Watershed Conditions

This analysis evaluated the 2-year, 10-year, and 100-year events, as well as the June 12, 2008 design storm which was larger than the 100-year event. The analysis of the June 2008 flood is documented in the MARS 2011 Clark Creek Watershed Study report, and it uses the FEMA FIS 100-year rainfall of 5.92 inches and extremely wet watershed soil conditions (Antecedent Moisture Condition 3). This study used the 24-hour rainfall depths included in the DNR hydrologic analysis for the FEMA FIS for the 10-year and 100-year rainfalls. The 2-year rainfall depth was taken from Technical Paper 40, because this event was not included in the FIS study. Rainfall distribution for all events used the curve developed for the FIS based on data from the City of Madison.

Table 1. 24-hour rainfall depths									
Storm Event	Rainfall Depth (in)								
2-year event	2.9								
10-year event	3.98								
100-year event	5.92								
June 12, 2008 design event	5.92								

. . 1 • < 11 1

Topography

Data used to define the elevations of wetland scrapes and adjacent areas for the hydraulic analysis of floodplain storage (described below) include two-foot contours from the Sauk County LIDAR survey and a GPS survey conducted by NRCS in December 2011. Additionally, field measurements of channel cross-sections conducted by MARS were used to supplement the survey data.

Potential Wetland Scrape Locations

The wetland scrape areas shown in Figure 1 were identified as suitable areas for wetland restorations on a drawing marked up by Sue Josheff and Jeff Schure of the DNR in June 2012, based on mapped information on soil conditions and existing land cover.

2.2 METHODS

Wetland Scrapes for Floodplain Storage

The approach to simulate the effect of wetland scrapes adjacent to the Quarry and Southern Tributaries was to construct HEC-RAS hydraulic models of these two reaches to evaluate storage volume – discharge relationships. These relationships were developed for both existing and proposed conditions to evaluate the flood mitigation benefit of the scrapes. The storage – discharge relationships were input to HEC-HMS model storage nodes to evaluate their impact on downstream flood discharge. This is the same method used by DNR in the Flood Insurance Study to evaluate the storage routing effect of the natural wetland north of Tower Road.

The locations of the scrapes (**Figure 1**) were digitized based on the drawing of suitable locations obtained from DNR. Scrapes were assumed to have a typical depth of 1.5 - 2 feet, consistent with standard restoration practice and not exceeding the likely depth to groundwater (assumed to be the adjacent stream channel invert). The actual depth of scrapes for wetland restoration would likely range from zero to four feet, to produce a variety of habitat conditions.

Hydraulic model cross section locations are shown in **Figure 2**, and cross section plots are included in **Appendix A**. A wide range of discharges from low flow to large flood conditions were simulated. The hydraulic model computed the water surface elevation at each cross section. Storage for the stream reach at each discharge was computed by HEC-RAS, based on the wetted area at each cross section and the distance downstream to the next cross section. Table of discharge and storage volume were exported from HEC-RAS for use in the HEC-HMS model (see **Appendix A**).

The impact of the increased flood storage of the wetland scrapes on downstream discharge was analyzed with the HEC-HMS model. New storage nodes were added to the model in the Quarry and Southern Tributary wetland scrape areas, with storage-discharge relationships defined using the relationships determined with HEC-RAS for existing and proposed conditions. HEC-HMS model schematic layouts are shown in **Appendix B**. Peak flood discharge was evaluated at the HEC-HMS node located 1000 feet upstream of the first STH 113 crossing, near the Maxwell Farm, because this is the beginning of the reach of Clark Creek that has experienced the most consistent flood damages.

Land Conversion to Prairie

State-owned land that is currently farmed but is planned for eventual conversion to prairie is shown on **Figure 1**. The hydrologic impact of this future land use conversion was evaluated by changing the runoff curve numbers in the HEC-HMS watershed model to represent prairie cover. Because the prairie conversion areas are subsets of HEC-HMS model subwatersheds, composite curve numbers were calculated for each subwatershed to represent new prairie areas within the surrounding land cover which will remain the same as existing conditions. Composite curve numbers are summarized in **Table 2**. A curve number of 58 was used to represent prairie for Antecedent Moisture Condition (AMC) II. Curve numbers for Antecedent Moisture Condition III were calculated with the following equation¹:

¹ Chow, VT, DR Maidment and LW Mays, 1988. Applied Hydrology. McGraw – Hill, New York.

$$CN(III) = \frac{23CN(II)}{10 + 0.13CN(II)}$$

The calculated curve number for prairie for Antecedent Moisture Condition III is 76.

		Existing	Conditions	Converted to Prairie		
Subwatershed	Area (Acres)	AMC II	AMC III	AMC II	AMC III	
R50W20	553.6	63.9	79.3	63.1	78.8	
R130W40	196.5	58.8	75.8	56.2	74.6	
R110W70	242.9	62.5	78.8	58.7	76.2	
R110W70-2	242.9	55.4	74.0	55.0	73.8	
61	70.7	71.7	84.9	59.4	76.9	
63	225.1	60.2	77.3	55.9	74.4	
R100W50	226.6	58.9	76.4	57.7	75.6	

Table 2.	Composite cur	ve numbers fo	or subwate	ersheds v	with pr	rairie co	onversion	areas

Prairie Detention

This option would entail earthwork to create a hummocky pattern of shallow depressions and ridges in parts of the agricultural fields that will be restored to prairie. This would create a natural variation in topography and moisture conditions, while the depressions would provide detention of stormwater runoff from the adjacent landscape. The area considered in this analysis is south of Tower Road, near the western edge of the large agricultural field (**Figure 1**). The total area shown for this feature is 5 acres. We assumed that half of this area (2.5 acres) would be depressions that could store runoff with an average ponding depth of 1 foot, providing 2.5 acre-feet of storage.

The HEC-HMS model was modified to simulate this feature by adding a storage node downstream of subwatershed 61, representing the agricultural field south of Tower Road. For analysis purposes, the numerous depressions were combined into a single basin with an area of 2.5 acres and a depth of 1 foot. Additional model runs with two and four times this storage volume were completed to evaluate the benefit of expanding the area of hummocky topography creation.

Downstream Impact of Reduced Flood Discharge

The impact of the flood peak discharge reduction on conditions downstream along Clark Creek was analyzed with the HEC-RAS hydraulic model of Clark Creek developed for the FEMA Flood Insurance Study. Three model cross sections were evaluated: near the Maxwell Farm (RS 5162), along STH 113 below the 2nd culvert (RS 3731), and immediately upstream of CTH W (RS 2758), as shown on **Figure 3**. At each location, the water surface elevation, channel velocity and shear stress, and width of inundation were evaluated for a range of peak discharges.

3 FLOOD MITIGATION PERFORMANCE

Scenarios analyzed (Table 3) include the following:

- 1. Conditions existing at the time of the June 2008 flood.
- 2. Addition of wetland scrapes on the Quarry and Southern Tributaries, as shown on **Figure 1**.
- 3. Conversion of state-owned agricultural lands to prairie, in addition to the wetland scrapes in Scenario 2.
- 4. Creation of 2.5 ac-ft of prairie depression storage in the location shown on the attached figure, in addition to the prairie conversion and wetland scrapes of Scenario 3.
- 5. Same as Scenario 4, but double the prairie depression storage area (deeper depressions and/or larger extent).
- 6. Same as Scenario 4, but four times the prairie depression storage area (deeper depressions and/or larger extent).

Both the wetland scrapes and prairie conversion provide significant peak flood discharge reduction. The addition of prairie depression storage to these other two measures creates less benefit, and increasing the storage area beyond that shown in the attached figure does not further reduce flood discharge. This indicates that (provided that the wetland scrapes are also constructed) the prairie storage shown in **Figure 1** is adequate to detain runoff from its tributary area, and making the storage area bigger results in an over-sized detention system.

The downstream benefits of reduced flood discharge would be realized as lower water surface elevations, reduced flow velocity and erosive power, and a narrower portion of the floodplain that would be inundated. The hydraulic model from the FIS was used to evaluate the effects of reduced discharge at three downstream cross sections (**Figure 3**). Results in **Table 4** are presented both in terms of the percentage of the June 12, 2008 peak discharge and the total discharge in cubic feet per second, to allow comparison with the different scenarios in **Table 3**.

0	0			
Scenario	June 2008 event	100 yr event	10 yr event	2 yr event
1) Existing Conditions	1002 cfs	484 cfs	163 cfs	52 cfs
2) Wetland scrapes on Southern Tributary and Quarry Tributary	959 cfs 4%	435 cfs 10%	128 cfs 21%	39 cfs 26%
3) Wetland scrapes + conversion of share cropped land to prairie	910 cfs 9%	377 cfs 22%	103 cfs 37%	31 cfs 41%
 Wetland scrapes + conversion of share cropped land to prairie + prairie depression storage south of Tower Rd. (2.5 ac-ft) 	911 cfs 9%	380 cfs 21%	98 cfs 40%	30 cfs 43%

Table 3. Peak flood discharge (cfs) 1000 ft upstream of the uppermost STH 113 culvert a	nd %
reduction from existing conditions discharge	

Scenario	June 2008 event	100 yr event	10 yr event	2 yr event
5) Wetland scrapes + conversion of share cropped land to prairie + prairie depression storage south of Tower Rd. (5.0 ac-ft)	886 cfs 12%	361 cfs 25%	98 cfs 40%	30 cfs 43%
 Wetland scrapes + conversion of share cropped land to prairie + prairie depression storage south of Tower Rd. (10.0 ac-ft) 	859 cfs 14%	361 cfs 25%	98 cfs 40%	30 cfs 43%

Table 4. Change in flood elevation, channel velocity and width of flooded area at three locations in lower Clark Creek for different peak flood discharge reductions

	Reduction from June 12, 2008 flow	Flow (cfs)	WS Elev (ft)	Channel Vel (ft/s)	Flooded Width (ft)	Channel Shear (Ibs/ft²)
RS 5162	0%	1022	924.1	12.4	82.1	7.7
	5%	971	924.0	12.0	79.1	7.3
	10%	920	924.0	11.6	76.2	6.8
	20%	818	923.8	11.1	63.1	6.3
	30%	715	924.0	9.2	74.1	4.3
	50%	511	923.4	8.2	47.0	3.6
	70%	307	922.6	7.5	36.5	3.2
	90%	102	921.3	6.4	18.9	2.6
RS 3731	0%	1242	883.7	11.0	77.1	6.6
	5%	1179.9	883.6	10.9	75.8	6.5
	10%	1117.8	883.6	10.8	75.2	6.4
	20%	993.6	883.5	10.4	73.9	6.0
	30%	869.4	883.4	10.0	72.6	5.6
	50%	621	883.1	8.5	69.3	4.2
	70%	307	882.54	7.32	41.99	3.28
	90%	102	881.19	5.9	16.7	2.37
RS 2758	0%	1242	855.4	7.7	186.4	2.8
	5%	1179.9	855.3	7.6	173.4	2.7
	10%	1117.8	855.3	7.4	163.5	2.6
	20%	993.6	855.1	7.0	143.9	2.3
	30%	869.4	854.9	6.6	127.2	2.1
	50%	621	854.4	5.8	97.9	1.7
	70%	307	853.7	4.7	40.3	1.2
	90%	102	852.4	3.4	25.0	0.7

4 PLANNING LEVEL COSTS

Estimated costs for the wetland scrapes, agricultural land to prairie conversion, and prairie detention creation are summarized in **Table 5**, with details in **Appendix C**. These estimates are based on the conceptual level designs discussed in this report, using unit rates provided by Sauk County and from the Wisconsin Department of Transportation average unit price list. An opinion of probable cost should be prepared in the future when final designs are developed.

Restoration Measure	Estimated Cost	Estimated Cost with 50% Contingency
Wetland scrapes	\$278,300	\$417,500
Conversion to prairie	\$112,000	\$168,000
Prairie depression storage creation (Scenario 5: 5 ac-ft of storage)	\$33,200	\$49,800

Table 5. Planning level cost estimates

These estimates include measures to establish vegetation during the first year of the restoration project. Long-term maintenance, such as mowing and herbicide treatment for invasive species control, will also be necessary, but those costs are not included in these estimates.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

- The wetland scrapes and conversion of share cropped land to native prairie vegetation have similar potential to reduce peak flood discharge. In combination, they could create reductions of approximately 40% for smaller floods such as the 2-year and 10-year events, and 10 - 20% for the 100-year and larger events.
- The creation of topographic depressions to detain runoff within the restored prairie area has smaller potential benefits. It could add a few percent reduction in peak discharge for the 100-year and larger events. It would have little impact on smaller, more frequent floods.
- Conversion of cropland to prairie is the most cost-effective of the three measures evaluated for flood discharge reduction.

5.2 **Recommendations**

- 1. We recommend further consideration of the wetland scrape creation and the conversion of agricultural land to native prairie vegetation.
- 2. Earthwork to create additional runoff storage in prairie restoration areas may not be cost effective to warrant further consideration.

FIGURES

Clark Creek Watershed Study Sauk County, WI

Figure 1 Flood Mitigation Measure Locations

1 inch = 500 feet

Montgomery Associates: Resource Solutions, LLC 119 South Main Street, Cottage Grove, WI 53527 (608) 839-4422 | www.ma-rs.org | 06/27/2012

Figure 2

Sauk County Clark Creek Watershed Study Montgomery Associates: Resource Solutions, LLC 119 South Main St., Suite A Cottage Grove, WI 53527

Figure 3 Selected Hydraulic Model Cross Section Locations Downstream on Clark Creek

AND SALES DE		24					
Date: June 2012 Developed by SJG	200	100	0	200	400	600 Fee	t
Developed by 33G							

APPENDIX A – WETLAND SCRAPE HYDRAULIC MODEL CROSS SECTION DETAILS

Model: Clark Creek South Trib

Plan: Exist Rating

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Volume
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(acre-ft)
SouthTrib	3097	PF 1	1	1261.5	1261.8	1261.8	1261.88	0.135938	2.19	0.46	3.02	0.99	0.1
SouthTrib	3097	PF 2	5	1261.5	1262.03	1262.03	1262.03	0.006597	0.7	15.83	518.81	0.24	0.51
SouthTrib	3097	PF 3	10	1261.5	1262.03	1262.03	1262.04	0.025173	1.37	16.08	518.87	0.47	0.69
SouthTrib	3097	PF 4	15	1261.5	1262.06	1262.03	1262.06	0.007043	0.75	31.34	522.83	0.25	1.2
SouthTrib	3097	PF 5	20	1261.5	1262.07		1262.07	0.007765	0.8	36.32	524.11	0.26	1.52
SouthTrib	3097	PF 6	30	1261.5	1262.08		1262.09	0.008747	0.86	44.91	526.32	0.28	2.06
SouthTrib	3097	PF 7	50	1261.5	1262.11		1262.12	0.010405	0.97	58.19	529.72	0.31	2.97
SouthTrib	3097	PF 8	75	1261.5	1262.13		1262.15	0.012137	1.07	71.1	533	0.34	3.97
SouthTrib	3097	PF 9	100	1261.5	1262.16		1262.18	0.013243	1.15	82.52	535.88	0.35	4.84
SouthTrib	3097	PF 10	125	1261.5	1262.17		1262.2	0.014617	1.22	91.76	538.2	0.37	5.65
SouthTrib	3097	PF 11	150	1261.5	1262.19		1262.22	0.015861	1.29	100.05	540.28	0.39	6.41
SouthTrib	3097	PF 12	175	1261.5	1262.2		1262.24	0.016964	1.36	107.72	542.19	0.4	7.12
SouthTrib	3097	PF 13	200	1261.5	1262.21		1262.26	0.017996	1.42	114.81	543.95	0.42	7.8

Model: Clark Creek South Trib

Plan: Prop Rating

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Volume
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(acre-ft)
SouthTrib	3097	PF 1	1	1261.5	1261.8	1261.8	1261.88	0.135938	2.19	0.46	419.06	0.99	0.99
SouthTrib	3097	PF 2	5	1261.5	1262.03	1262.03	1262.03	0.006598	0.7	15.83	518.81	0.24	2.24
SouthTrib	3097	PF 3	10	1261.5	1262.03	1262.03	1262.04	0.025176	1.37	16.08	518.87	0.47	2.67
SouthTrib	3097	PF 4	15	1261.5	1262.06	1262.03	1262.06	0.007044	0.75	31.34	522.83	0.25	3.75
SouthTrib	3097	PF 5	20	1261.5	1262.07		1262.07	0.007766	0.8	36.32	524.11	0.26	4.37
SouthTrib	3097	PF 6	30	1261.5	1262.08		1262.09	0.008748	0.86	44.91	526.32	0.28	5.51
SouthTrib	3097	PF 7	50	1261.5	1262.11		1262.12	0.010406	0.97	58.19	529.72	0.31	7.54
SouthTrib	3097	PF 8	75	1261.5	1262.13		1262.15	0.011958	1.07	71.42	533.08	0.33	9.82
SouthTrib	3097	PF 9	100	1261.5	1262.16		1262.18	0.013143	1.14	82.71	535.93	0.35	11.76
SouthTrib	3097	PF 10	125	1261.5	1262.17		1262.2	0.014084	1.2	92.81	538.47	0.37	13.49
SouthTrib	3097	PF 11	150	1261.5	1262.19		1262.22	0.01507	1.27	101.64	540.68	0.38	15.06
SouthTrib	3097	PF 12	175	1261.5	1262.21		1262.25	0.015984	1.32	109.7	542.69	0.39	16.51
SouthTrib	3097	PF 13	200	1261.5	1262.22		1262.26	0.017111	1.38	116.6	544.4	0.41	17.87

Model:Clark Creek Quarry TribPlan:Exist Rating

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Volume
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(acre-ft)
Quarry Trib	1661	PF 1	1	1320	1320.4	1320.4	1320.5	0.133904	2.52	0.4	1.99	1	0.04
Quarry Trib	1661	PF 2	5	1320	1320.75	1320.75	1320.95	0.112863	3.54	1.41	3.76	1.02	0.16
Quarry Trib	1661	PF 3	10	1320	1321.1	1321.1	1321.18	0.033198	2.6	6.83	58.73	0.59	0.27
Quarry Trib	1661	PF 4	20	1320	1321.19	1321.19	1321.26	0.034219	2.9	13.27	83.74	0.62	0.45
Quarry Trib	1661	PF 5	40	1320	1321.27	1321.27	1321.36	0.042119	3.48	21.26	106.92	0.7	0.82
Quarry Trib	1661	PF 6	70	1320	1321.35	1321.35	1321.46	0.047254	3.94	30.92	129.5	0.75	1.33
Quarry Trib	1661	PF 7	100	1320	1321.41	1321.41	1321.54	0.051536	4.3	38.82	145.4	0.8	1.78
Quarry Trib	1661	PF 8	150	1320	1321.49	1321.49	1321.64	0.051075	4.54	52.11	168.79	0.8	2.47
Quarry Trib	1661	PF 9	200	1320	1321.57	1321.57	1321.73	0.048779	4.65	65.05	188.81	0.79	3.1
Quarry Trib	1661	PF 10	250	1320	1321.61	1321.61	1321.81	0.054128	5.03	73.5	200.79	0.84	3.7
Quarry Trib	1661	PF 11	300	1320	1321.68	1321.68	1321.88	0.047064	4.89	87.97	219.83	0.79	4.27
Quarry Trib	1661	PF 12	350	1320	1321.73	1321.73	1321.94	0.045622	4.95	99.29	233.63	0.79	4.84
Quarry Trib	1661	PF 13	400	1320	1321.77	1321.77	1322	0.044208	4.99	110.46	246.49	0.78	5.35

Model:Clark Creek Quarry TribPlan:Proposed Rating

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl	Volume
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)		(acre-ft)
Quarry Trib	1661 F	νF 1	1	1320	1320.4	1320.4	1320.5	0.133904	2.52	0.4	164.83	1	0.26
Quarry Trib	1661 F	νF 2	5	1320	1320.75	1320.75	1320.95	0.112863	3.54	1.41	178.15	1.02	1.13
Quarry Trib	1661 F	PF 3	10	1320	1321.04	1321.04	1321.06	0.013529	1.56	15.2	329.87	0.37	2.07
Quarry Trib	1661 F	PF 4	20	1320	1321.06	1321.06	1321.08	0.018222	1.86	22.86	330.54	0.44	3.25
Quarry Trib	1661 F	PF 5	40	1320	1321.08	1321.08	1321.12	0.033911	2.59	29.61	331.13	0.6	4.9
Quarry Trib	1661 F	PF 6	70	1320	1321.12	1321.12	1321.17	0.038078	2.85	40.86	332.12	0.64	5.42
Quarry Trib	1661 F	PF 7	100	1320	1321.15	1321.15	1321.21	0.036002	2.87	51.94	333.08	0.63	5.88
Quarry Trib	1661 F	PF 8	150	1320	1321.18	1321.18	1321.27	0.048984	3.44	60.65	333.84	0.74	6.5
Quarry Trib	1661 F	PF 9	200	1320	1321.22	1321.22	1321.33	0.045394	3.44	74.04	335	0.72	7.12
Quarry Trib	1661 F	PF 10	250	1320	1321.24	1321.24	1321.39	0.052842	3.79	81	335.6	0.78	7.64
Quarry Trib	1661 F	PF 11	300	1320	1321.28	1321.28	1321.44	0.042263	3.53	96.89	336.97	0.7	8.2
Quarry Trib	1661 F	PF 12	350	1320	1321.32	1321.32	1321.48	0.040198	3.54	108.05	337.93	0.69	8.69
Quarry Trib	1661 F	PF 13	400	1320	1321.35	1321.35	1321.53	0.03832	3.55	118.92	338.86	0.68	9.21

APPENDIX B – WATERSHED HYDROLOGIC MODEL LAYOUTS

Layout of HEC-HMS model of wetland scrapes and prairie restoration.

("Reservoir 3" downstream of Subwatershed 61).

APPENDIX C – PLANNING LEVEL COST ESTIMATES

Clark Creek Watershed Study Sauk County, WI

Planning-Level Cost Estimates Southern & Quarry Tributary Wetland Scrapes

NO.	ITEM DESCRIPTION	ITEM DESCRIPTION ESTIMATED QUANTITY UNIT UNIT PRICE		IT PRICE	TOTAL	
1	Site Preparation					
1a	Mobilization / Demobilization	1	LS	\$	1,000.00	\$ 1,000.00
1b	Clearing and grubbing	0.5	AC	\$	6,000.00	\$ 3,000.00
	Subtotal for Site Preparation					\$ 4,000.00
2	Erosion Control					
2c	Silt Fence allowance	750	LF	\$	2.00	\$ 1,500.00
	Subtotal for Erosion Control					\$ 1,500.00
3	Berm Construction					
3a	Strip, stockpile, place and compact topsoil	18000	CY	\$	3.00	\$ 54,000.00
3b	Earthwork	53000	CY	\$	3.00	\$ 159,000.00
	Subtotal for Berm Construction					\$ 213,000.00
4	Restoration					
4a	Cover crop seeding	22	AC	\$	487.50	\$ 10,800.00
4b	Native wetland spp. seeding	22	AC	\$	1,500.00	\$ 33,000.00
4c	Mulch	106000	SY	\$	0.13	\$ 13,800.00
	Subtotal for Restoration					\$ 57,600.00
5	Maintenance (year 1)					
5a	Invasive control spraying	22	AC	\$	100.00	\$ 2,200.00
	Subtotal for Restoration					\$ 2,200.00
Cost	t - No Contingency	\$ 278,300				
Esti	mating Contingency (50%)	\$ 139,200				
Eng	ineering and Permitting	\$ -				
Tota	ll Estimated Cost - With Cor	\$ 417,500				

Clark Creek Watershed Study Sauk County, WI

Planning-Level Cost Estimates

	Conversion o	f share cropp	oed la	nd to	o prairi	e	
NO.	ITEM DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNI	T PRICE		TOTAL
1	Site Preparation						
1a	Invasive control spraying	160	AC	\$	100.00	\$	16,000.00
						\$	-
	Subtotal for Site Preparation					\$	16,000.00
2	Restoration						
2a	Seed	160	AC	\$	500.00	\$	80,000.00
2b	Seed application	160	AC	\$	100.00	\$	16,000.00
	Subtotal for Restoration					\$	96,000.00
3	Maintenance (year 1)						
3a	Mowing (2x)	320	AC	\$	100.00	\$	32,000.00
3b	Invasive control spraying	160	AC	\$	100.00	\$	16,000.00
	Subtotal for Restoration					\$	48,000.00
Cost - No Contingency							112,000
Estimating Contingency (50%)							56,000
Eng	ineering and Permitting						
Tota	ll Estimated Cost - With Co	\$	168,000				

	Clark Creek Watershed Study Sauk County, WI											
	Planning-Level Cost Estimates											
	Earthwo	rk for Prairi	e Det	ent	ion							
	5 ac-ft of s	storage with	nin 10	ac	area							
NO.	ITEM DESCRIPTION	ESTIMATED QUANTITY	UNIT	UNIT PRICE			TOTAL					
1	Site Preparation											
1a	Mobilization / Demobilization	1	LS	\$	1,000.00	\$	1,000.00					
1b	Clearing and grubbing	0	AC	\$	6,000.00	\$	-					
	Subtotal for Site Preparation					\$	1,000.00					
2	Erosion Control											
2a	Silt fence	1000	LF	\$	2.00	\$	2,000.00					
	Subtotal for Erosion Control					\$	2,000.00					
3	Earthwork											
3b	Earthwork	8067	CY	\$	3.00	\$	24,200.00					
	Subtotal for Berm Construction					\$	24,200.00					
4	Restoration											
4a	Seed	10	AC	\$	500.00	\$	5,000.00					
4b	Seed application	10	AC	\$	100.00	\$	1,000.00					
	Subtotal for Restoration					\$	6,000.00					
Cost	t - No Contingency					\$	33,200					
Esti	mating Contingency (50%)	\$	16,600									
Eng	ineering and Permitting	\$	-,									
Total Estimated Cost - With Contingency							49,800					

Г